
RESEARCH ARTICLE

Origins of 1/f-like tissue oxygenation

fluctuations in the murine cortex

Qingguang ZhangID
1*, Kyle W. GheresID

2, Patrick J. DrewID
1,3,4*

1 Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania

State University, University Park, Pennsylvania, United States of America, 2 Graduate Program in Molecular

Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, Pennsylvania,

United States of America, 3 Department of Neurosurgery, The Pennsylvania State University, University

Park, Pennsylvania, United States of America, 4 Department of Biomedical Engineering, The Pennsylvania

State University, University Park, Pennsylvania, United States of America

* qxz14@psu.edu (QZ); pjd17@psu.edu (PJD)

Abstract

The concentration of oxygen in the brain spontaneously fluctuates, and the distribution of

power in these fluctuations has a 1/f-like spectra, where the power present at low frequen-

cies of the power spectrum is orders of magnitude higher than at higher frequencies.

Though these oscillations have been interpreted as being driven by neural activity, the origin

of these 1/f-like oscillations is not well understood. Here, to gain insight of the origin of the 1/

f-like oxygen fluctuations, we investigated the dynamics of tissue oxygenation and neural

activity in awake behaving mice. We found that oxygen signal recorded from the cortex of

mice had 1/f-like spectra. However, band-limited power in the local field potential did not

show corresponding 1/f-like fluctuations. When local neural activity was suppressed, the 1/f-

like fluctuations in oxygen concentration persisted. Two-photon measurements of erythro-

cyte spacing fluctuations and mathematical modeling show that stochastic fluctuations in

erythrocyte flow could underlie 1/f-like dynamics in oxygenation. These results suggest that

the discrete nature of erythrocytes and their irregular flow, rather than fluctuations in neural

activity, could drive 1/f-like fluctuations in tissue oxygenation.

Introduction

Fluctuations in oxygen tension are ubiquitous throughout the body and are found in muscle

tissue and tumors [1], in the retina [2,3], in the carotid artery [4], and in the cortex [5–12].

Despite their ubiquity, relatively little is understood about the origin of these oxygen fluctua-

tions. While some of these fluctuations are driven by fluctuations in respiration, such as the

breathing rate and intensity [4,13–20], fluctuations in oxygen concentration are present cover-

ing a wide range of frequency, not just at the respiration frequency, with most of the power

concentrated at lower (<0.1 Hz) frequencies [1,2,5,7–9]. The power spectrum of oxygen con-

centrations in many tissues shows a “1/f-like” behavior, that is, the power at any given fre-

quency f is proportional to 1/fβ, where the exponent β is usually between 1 and 2 [8]. The

hallmark of 1/f-like signals is that the power at lower frequencies is much larger than at higher
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frequencies, producing signals with rapid, small oscillations riding on top of much larger, but

slower fluctuations. We refer to these oscillations as being 1/f-like because they are only char-

acterized within a limited frequency region (here,�0.01 Hz and�1 Hz). While many biologi-

cal processes have been shown to exhibit 1/f-like dynamics, a process can only be said to be 1/f

if there are data over at least 2 orders of magnitude in both the abscissa and ordinate [21], a cri-

terion that only a few studies meet [8]. In contrast, white noise has a constant power across fre-

quencies, which when fitted with a power law gives a β close to 0 (S1 Fig, panel A). In both

cases, there can be “extra” spectral power concentrated in a single band, leading to a “bump”

in the spectrum (S1 Fig, panels B and D). Measurements of brain tissue oxygenation in pri-

mates show a clear, statistically robust 1/f-like power spectra, with an additional peak near 0.1

Hz [8].

Brain tissue oxygenation is determined by the balance between the oxygen supplied by the

blood and the oxygen consumed by mitochondria in neurons, astrocytes, and mural cells of

the brain parenchyma. Both of these processes could contribute to fluctuations in oxygenation.

Increases in brain neural activity are usually accompanied by vasodilation and increased blood

flow/volume that leads to increases in oxygenation [22]. The resulting change in oxygenation

will involve an interplay of factors, with the increase in blood flow usually, but not always, driv-

ing an oxygen increase [20]. The linkage of oxygenation to neural activity is widely used to

infer neural activity noninvasively using blood oxygenation level-dependent (BOLD) func-

tional magnetic resonance imaging (fMRI) [23]; however, there are many examples of neural

and vascular signals departing from this relationship [24–29]. Converging evidence from a

large body of studies in both rodents and primates have shown that power in the gamma band

(nominally 40 to 100 Hz) of the local field potential (LFP) is most closely related to the vasodi-

lation that leads to increased blood volume and flow [30–36]. Spiking activity has similar cor-

relations to blood volume as gamma-band LFP power [30,37,38], while the correlations for

other bands of the LFP are much lower [30,31,34]. The signal in the LFP is the sum of popula-

tion activity within the spatial area spanned by the electrodes [39]. Its precise relations to

underlying neuronal activity is complex [40], but the LFP is primarily driven by synaptic cur-

rents generated by the interaction between pyramidal neurons and parvalbumin-positive

interneurons [41–43]. The synaptic currents that drive the LFP are largely generated by local

spiking, not from input from other areas, as localized increase in pyramidal neuron activity

(generated with optogenetic or chemogenetic approaches) causes large increases in gamma-

band power [41,42,44], and suppression of local neural activity drives large decreases in

gamma-band power [44]. Given the interrelatedness of gamma-band oscillations and local

neuronal spiking, it is not surprising that in the awake animal, increases in local spiking and

gamma-band power tend to be strongly correlated [45–48].

There have been speculations that the ultraslow (<1 Hz) electrical signals are the neural

correlate of brain hemodynamics [49–51], but frequencies below 1 Hz in the LFPs are of a

nonneuronal origin (see [36] for review; [52–57]). Because the electrical potential of the blood

is negative relative to that of the cerebral spinal fluid [52,53], changes in the blood volume in

the brain will generate ultraslow potentials. The dilation of arterioles (occurs over seconds)

and veins (occurs over tens of seconds) in awake animals’ brain [58–60] will generate changes

(<1 Hz) in the LFP [54–57]. The nonneuronal origin of<1 Hz electrical signals has been

shown with manipulations that dilate or constrict blood vessels independent of changes in

neural activity, such as CO2 inhalation [55–57,61], head tilt, and Valsalva maneuver [54].

Additionally, most amplifiers have circuitry setup to reject these very low frequencies [62], so

unless the recording setup is specifically designed to measure at DC frequencies, signals <1 Hz

are not of a physiological origin.

PLOS BIOLOGY Vascular origin of 1/f-like tissue oxygenation fluctuations

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001298 July 15, 2021 2 / 39

of the neurovascular unit and its function in the

whole mouse brain” to Dr. Yongsoo Kim

(Department of Neural and Behavioral Sciences,

College of Medicine, The Pennsylvania State

University). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: aCSF, artificial cerebrospinal fluid;

AIC, Akaike information criterion; AP5, (2R)-amino-

5-phosphonopentanoic acid; BLP, band-limited

power; BOLD, blood oxygenation level-dependent;

CMRO2, cerebral metabolic rate of oxygen; CNQX,

6-cyano-7-nitroquinoxaline-2,3-dione; DFA,

detrended fluctuation analysis; EAT, erythrocyte-

associated transient; FC, frontal cortex; FL/HL,

forelimb/hindlimb; fMRI, functional magnetic

resonance imaging; HRF, hemodynamic response

function; LFP, local field potential; MUA, multiunit

activity; PDF, probability density function; PoRTS,

polished and reinforced thin-skull; PSD, power

spectrum density; RBC, red blood cell; SD,

standard deviation; 2PLSM, two-photon laser

scanning microscopy.

https://doi.org/10.1371/journal.pbio.3001298


Though there are many studies investigating the relationship between neural activity and

vasodilation, there is a paucity of studies simultaneously measuring neural activity and oxygen

changes [63–66], with only a handful looking in awake animals [8,20,67]. Whether 1/f-like

dynamics in brain oxygenation are driven by neural activity bears on the interpretation of

hemodynamic imaging. Several fMRI studies have suggested that 1/f-like dynamics exist in

human BOLD signals [68–71], and the 1/f-like fluctuations in brain hemodynamics have been

interpreted as being driven by 1/f-like fluctuations in neural activity [72,73]. However, record-

ings of the LFP in both humans [74] and nonhuman primates [75] do not seem to show 1/f

dynamics in band-limited power (BLP).

As 1/f-like oxygen fluctuations are found in other organs besides the brain [1,2], their origin

may not be neural and could come from vascular process. Blood flow and arterial diameter

show fluctuations in a similar frequency range as oxygen fluctuations [3]. Additionally, as oxy-

gen is carried by red blood cells (RBCs), fluctuations in the flux of RBCs can drive erythrocyte-

associated transients (EATs) in oxygen in the tissue [76–92], and fluctuations in flux of these

changes in local oxygenation in the cortex [93–97]. Stalls, brief stoppages in blood flow

through capillaries, happen sporadically and continuously in the cortex due to transient block-

age of blood flow by leukocytes [98–103], which are known to greatly increase vascular resis-

tance [104]. These blockages likely drive changes in tissue oxygenation [105], and increased

frequency of these stalls has been linked to neurodegenerative disorders [98,99,105].

To understand the relationship between neural activity and 1/f-like oxygen tension oscilla-

tions in the brain, we used oxygen polarography to directly measure brain tissue oxygenation

in different cortical regions and layers in awake mice. We find that in unanesthetized, head-

fixed mice, (1) cortical oxygenation showed 1/f-like power spectra that are similar across corti-

cal regions and layers; (2) the BLP of LFP activity did not show 1/f-like power spectra; (3)

there was significant coherence and correlation between neural activity and tissue oxygen-

ation, but both were small; (4) silencing neural activity did not stop 1/f-like fluctuations in

brain oxygenation; and (5) simulations of erythrocyte flow, taking into account the statistics of

erythrocyte spacing, showed that the irregular nature of erythrocyte spacing can generate 1/f-

like dynamics in tissue oxygenation. Our results suggest that the driver of 1/f-like oxygenation

fluctuations is nonneuronal in origin and could be due to fluctuations in RBC flux through the

capillary network.

Results

We measured tissue oxygenation signals and neural activity from the somatosensory and fron-

tal cortices of awake behaving mice head fixed on a spherical treadmill [20,24,30,106]. We

recorded laminar neural activity with linear multisite probes in 7 mice, laminar oxygenation

using polarographic electrodes in 37 mice, and simultaneous neural activity, respiration, and

oxygen measurements in 9 mice. Additionally, 9 mice were used to measure RBCs spacing in

capillaries using two-photon laser scanning microscopy (2PLSM). We reported results for

“rest,” which only include data from periods of time when the animal was not locomoting, or

for all data, which include periods of locomotion and rest. We did this because unanesthetized

mice engage in spontaneous movement frequently, and these spontaneous movements are

large drivers of neural activity and hemodynamic signals [30,36,107–109]. Specifically, cutane-

ous sensation during locomotion drives large increases in neural activity in the forelimb/hin-

dlimb (FL/HL) region [20,24,110,111]. The increase in neural activity drives localized

increases in blood flow, which is not due to systemic factors [20,112]. Neural and oxygen mea-

surements were made in the frontal cortex (FC) and in the FL/HL region of the somatosensory

cortex (identified by cytochrome oxidase staining [113]). All power spectra and frequency-
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domain analyses were done using multitaper techniques [114], which minimize spectral leak-

age, using the Chronux toolbox (http://chronux.org/). In addition, we applied a time-domain

analysis method, detrended fluctuation analysis (DFA) [115], which complements the fre-

quency-domain approach, to rigorously test the 1/f-like dynamics in various signals. Portions

of this dataset have been published previously [20]. In this previous report, we found that loco-

motion significantly and globally increases cerebral oxygenation, in brain regions involved in

locomotion, as well as in the FC and the olfactory bulb. The oxygenation increase persists

when neural activity and functional hyperemia are blocked, occurred both in the tissue and in

arteries feeding the brain, and is tightly correlated with respiration rate and the phase of respi-

ration cycle.

Brain oxygenation shows 1/f-like power spectrum with a band-limited

component

We first asked if tissue oxygen concentrations (PtO2) in the cortex of awake mice showed 1/f-

like power spectra, as has been observed in the cortex of nonhuman primates [8]. We collected

tissue oxygenation in multiple sites in 37 awake behaving mice (Fig 1A). The average duration

of recording at each site was 37.0 ± 11.6 minutes. Examination of the resting PtO2 trace reveals

that oxygen levels show slow fluctuations on the time scale of seconds or longer (Fig 1B). The

power spectra of tissue oxygen signals, when plotted on a log–log axis, was linear, with a band-

limited component (in the range of 0.1 to 0.3 Hz) (Fig 1C), as seen in nonhuman primates [8].

The band-limited oscillations cover the frequency band in which spontaneous arterial oscilla-

tions are seen in vivo when neural activity is blocked [30] and ex vivo in cannulated arteries

[116–119]. As a control for any nonphysiological sources of this signal [120,121], we measured

PtO2 in a mouse postmortem. The power spectrum of PtO2 in the mouse postmortem was

essentially flat (with an exponent of −0.04; Fig 1C), characteristic of white noise (S1 Fig, panel

A), and was several orders of magnitude smaller at all frequencies, ruling out a nonphysiologi-

cal origin of these fluctuations.

We then quantified the nature of the power spectrum of oxygen fluctuations by fitting it

with a power law distribution in the 0.01 to 1 Hz frequency range, since fitting of alternative

models (an exponential model and a log-normal model) to the oxygen power spectrum does

not provide significantly better fits for all the data (though in some cases, they were better fits

for resting data; see S1 Table and S1 Text). To estimate the power-law exponent, we fitted the

oxygen power spectrum using an ordinary least squares regression (see Methods), to allow

comparisons to previous studies [8,68], though there are caveats to this approach [122]. The

coefficient of determination (R2) of power law fits were high, both for resting data only (R2 =

0.62 ± 0.22) and using all the data (R2 = 0.96 ± 0.06). Averaged across all animals (n = 37), the

power law exponent during rest was 1.42 ± 0.19, comparable to what have been observed in

unanesthetized nonhuman primates (1.74) using oxygen-sensitive microelectrodes [8], but

somewhat larger than those observed in human BOLD studies [68]. We then asked if the expo-

nent of the fit to the power spectrum differed across cortical layers, since there are laminar dif-

ferences in vascular, mitochondrial, and cellular density [123–125], which could affect the

oxygen dynamics [95,96]. No significant differences of power-law exponents were observed

among different cortical depths at rest (1.33 ± 0.29 at 100 μm, 1.43 ± 0.32 at 300 μm,

1.43 ± 0.25 at 500 μm, 1.49 ± 0.27 at 800 μm, n = 37 mice, Fig 1F, one-way ANOVA, F(3,143)

= 1.9606, p = 0.1227), though resting PtO2 was lower at 100 μm compared to 300 μm, 500 μm,

and 800 μm below the pia (12.68 ± 6.57 mm Hg at 100 μm, 20.50 ± 9.55 mm Hg at 300 μm,

21.58 ± 9.76 mm Hg at 500 μm, 20.95 ± 9.30 mm Hg at 800 μm, Kruskal–Wallis test, χ2(3, 147)

= 20.9910, p< 0.0001, see [20] for details). We next asked if the 1/f-like dynamics of tissue
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https://doi.org/10.1371/journal.pbio.3001298.g001
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oxygenation differed between FC and FL/HL, as different power-law exponent has been

observed in different brain networks [68]. We did not observe a significant difference between

the fitted exponents for FC (n = 14 mice, 1.44 ± 0.15, average across all cortical depths for each

animal) and those of the FL/HL (n = 23 mice, 1.41 ± 0.21, average across all cortical depths for

each animal, two-sample t test, t(35) = 0.3710, p = 0.7129). We then asked if the power law fit

was affected by behavior, so we fitted the power spectrum of the whole dataset including both

rest and locomotion data. Including all the data increased overall power, with most of the

power increase occurred at lower frequency (Fig 1E). Including the locomotion periods

increased the power law exponent (n = 37 mice, rest: 1.42 ± 0.19, periods including both rest

and locomotion: 1.75 ± 0.14, Fig 1F and 1H, Wilcoxon signed rank test, p< 0.0001) but does

not change the laminar differences (1.72 ± 0.23 at 100 μm, 1.77 ± 0.23 at 300 μm, 1.75 ± 0.24 at

500 μm, 1.77 ± 0.21 at 800 μm, n = 37 mice, Fig 1F, one-way ANOVA, F(3,147) = 0.3555,

p = 0.7852), as observed using only resting data.

We further tested the existence of 1/f-like dynamics of brain oxygenation using DFA [115],

which operates in the time domain. DFA measures the amount of fluctuation, F(n), of a

detrended integrated signal at different length scales n, revealing the scaling properties of the

signal. We fitted the fluctuations with the function F(n)/nα. The parameter α, known as the

scaling exponent, quantifies the temporal correlation in the signal as follows [126,127]: if α =

0.5, there is no correlation in the fluctuations, and the signal is “white noise” (S1 Fig, panel A);

if α is appreciably greater than 0.5, this means there are positive correlations in the signal,

where large values are more likely to be followed by large values (and vice versa; S1 Fig, panels

C and D), which is a hallmark of 1/f-like dynamics; if α<0.5, there are negative correlations,

where large values are more likely to be followed by small values, and vice versa. Fitting the

DFA with the function F(n)/nα showed a very high goodness of fit (rest: R2 = 0.96 ± 0.03; all

data: R2 = 0.98 ± 0.02; S2 Table), and the majority of DFA scaling exponents were greater than

one (Fig 1G), consistent with the signal having 1/f-like dynamics. No significant differences

were observed among different cortical depths using both rest and locomotion data

(1.28 ± 0.15 at 100 μm, 1.34 ± 0.13 at 300 μm, 1.31 ± 0.13 at 500 μm, 1.35 ± 0.11 at 800 μm, n =
37 mice, Fig 1G, Kruskal–Wallis test, χ2(3, 147) = 4.5401, p = 0.2087). However, the DFA scal-

ing exponent at rest was smaller for surface layer compared to deep layers (1.15 ± 0.15 at

100 μm, 1.25 ± 0.17 at 300 μm, 1.22 ± 0.13 at 500 μm, 1.30 ± 0.14 at 800 μm, n = 37 mice, Fig

1G, Kruskal–Wallis test, χ2(3, 143) = 13.5451, p = 0.0036). The DFA of the oxygen dynamics in

the cortex, like the analysis in the frequency domain (Fig 1E and 1F), is consistent with the

oxygen dynamics having 1/f-like dynamics.

Using 2 different analysis approaches, we found that, just as in primates [8], there are 1/f-

like dynamics in the oxygen levels in the cortex of mice. There was also a band-limited compo-

nent (which deviates from a strict 1/f relationship), albeit at a slightly higher frequency than

that found in primates [8], close to the vasomotion frequency of rodents [30].

Fluctuations in band-limited power of the LFPs do not show 1/f-like

dynamics

To determine whether neural activity exhibited similar dynamics to oxygen signals, we

recorded LFPs (0.1 to 300 Hz) and multiunit activity (MUA; 300 to 3,000 Hz) from 16-channel

laminar electrodes placed in the FC (n = 4 sites) and FL/HL (n = 6 sites) during wakeful rest

and locomotion in a separate group of mice (n = 7 mice; Fig 2A). Recording from one site

from FC was excluded from this analysis as there was not enough resting data (see Methods).

Broadband (1 to 100 Hz) LFPs showed 1/f-like power spectra above 5 Hz, but not below, and

MUA activity has a relatively smaller slope (S2 Fig). The most relevant aspect of the LFP for
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the oxygen signal is the BLP (Fig 2B and 2C), which is a measure of envelope amplitude

changes of LFP oscillations at specific frequency bands. Previous studies have shown that BLPs

in the gamma-band (40 to 100 Hz) are best correlated with the time course of vessel dilation

and oxygen changes [20,25,30–32,34,38,128], so we next calculated the power of gamma-band

LFP oscillations (see Methods; Fig 2D) and estimated the power law fitting exponent (Fig 2E).

In contrast to the broadband LFPs (S2 Fig), a flat power spectrum was observed in the

gamma-band BLP in the frequency range below 1 Hz at rest (−0.14 ± 0.08 at 100 μm, −
0.08 ± 0.08 at 300 μm, −0.09 ± 0.15 at 500 μm, −0.15 ± 0.15 at 800 μm, Fig 2E, left, one-way 
ANOVA, F(3,34) = 0.7794, p = 0.5145), characteristic of white noise (S1 Fig, panel A). Fitting 
all the data, including both rest and locomotion periods, significantly increased the power law

exponent (rest: −0.11 ± 0.08, all data: 0.68 ± 0.18, Wilcoxon rank sum test, p< 0.0001) and

showed no laminar difference (0.75 ± 0.20 at 100 μm, 0.60 ± 0.19 at 300 μm, 0.72 ± 0.17 at

500 μm, 0.63 ± 0.30 at 800 μm, one-way ANOVA, F(3,34) = 0.9981, p = 0.4067; Fig 2E, right).

The power spectra of the sub-alpha (1 to 8 Hz) BLP and beta (10 to 30 Hz) BLP were also simi-

lar to white noise (S3 Fig). Further analysis of DFA scaling exponent reproduced all the results

obtained using the power law exponent. Specifically, the DFA scaling exponent of gamma-

band BLP shows characteristics of white noise at rest (0.52 ± 0.04 at 100 μm, 0.54 ± 0.04 at

300 μm, 0.54 ± 0.03 at 500 μm, 0.53 ± 0.04 at 800 μm, one-way ANOVA, F(3,35) = 0.7474,

p = 0.5319; Fig 2F, left). A significant larger DFA scaling exponent was observed using both

rest and locomotion periods (rest: 0.53 ± 0.03, all data: 0.74 ± 0.09, Wilcoxon rank sum test,

p< 0.0001) and showed no laminar difference (0.76 ± 0.10 at 100 μm, 0.75 ± 0.09 at 300 μm,

0.75 ± 0.13 at 500 μm, 0.72 ± 0.09 at 800 μm, one-way ANOVA, F(3,35) = 0.1844, p = 0.9063;

Fig 2F, right). This shows that the power spectra of BLP fluctuations of LFPs in mice do not

have 1/f-like dynamics, consistent with recordings from nonhuman primates and humans

[74,75,129].

Weak correlations between tissue oxygenation dynamics and

electrophysiology

The large mismatch between the power law fit exponents of the power spectrums for BLP of

LFPs and oxygen fluctuations suggest that their relationship is weak. We then asked how cor-

related/coherent our oxygen signals were with simultaneously recorded neural activity at rest.

To answer this question, we simultaneously measured tissue oxygenation, respiration, and

LFP activity in 9 animals. To differentiate the frequency dependency of the correlation, we cal-

culated the magnitude-squared coherence between oxygen and BLP of LFP, as well as the

coherence between oxygen and respiratory rate (see Methods). The magnitude-squared coher-

ence at a given frequency is equivalent to the R2 between the 2 signals bandpass filtered at the

frequency [36]. A weak but statistically significant level of coherence between BLP of LFP and

oxygen was observed between 0.01 and 1 Hz, with larger coherence at the lower frequencies

(Fig 3A–3C). However, the magnitude of this squared coherence (which will report the frac-

tion of variance in the signal at that frequency) was low, less than 0.2, implying >80% of the

observed variance was not (linearly) predicted by neural activity. This low value should be

viewed in light of previous work comparing the correlations of the BOLD signal with simulta-

neously measured electrophysiological signals in awake primates. These studies found that cor-

relation coefficients (R) between gamma-band LFP power and the hemodynamic signals were

mean shown as dashed lines. The data used to generate this figure are available at https://doi.org/10.5061/dryad.

pg4f4qrmt. BLP, band-limited power; DFA, detrended fluctuation analysis; FC, frontal cortex; FL/HL, forelimb/

hindlimb; LFP, local field potential.

https://doi.org/10.1371/journal.pbio.3001298.g002

PLOS BIOLOGY Vascular origin of 1/f-like tissue oxygenation fluctuations

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001298 July 15, 2021 8 / 39

http://dx.doi.org/10.5061/dryad.pg4f4qrmt
http://dx.doi.org/10.5061/dryad.pg4f4qrmt
https://doi.org/10.1371/journal.pbio.3001298.g002
https://doi.org/10.1371/journal.pbio.3001298


in the range of 0.3 to 0.4 [34,128,130]. These “resting-state” correlations were consistent across

a wide range of data acquisition parameters (0.25 Hz to 1 Hz sample rate) and durations (30

seconds to 30 minutes), indicating that these correlations were not dependent on acquisition

parameters in this range. However, when a very strong visual stimulus and long (10 seconds)

repetition time is used, the correlation coefficient can be as high as 0.8 [128]. A more recent

study in mouse somatosensory cortex that controlled for arousal level also showed similar cor-

relations between simultaneous hemodynamic and neural signals [131], suggesting that the

somatosensory cortex of rodents shows similar neurovascular coupling behavior as seen in

nonhuman primates [34,128,130]. The amount of variance explained (R2) by neural activity

can be obtained by squaring the correlation coefficient, giving a value in the range of 10% to

20%, meaning that 80% to 90% of the observed BOLD signal is uncorrelated with neural activ-

ity, similar to our results.

As another test of how well the neural activity can predict changes in oxygenation, we calcu-

lated the oxygen hemodynamic response function (HRF; Fig 4B) by deconvolving oxygen sig-

nals from gamma-band power fluctuations of LFP [20,30], using the first half of the data from
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each site. We fit the deconvolved HRF with the sum of 2 gamma distribution functions (see

Methods), which is standard in the field [25,37,132–135] to create a smoothed HRF. There was

a good agreement between the deconvolved and smoothed HRFs (goodness of fit: 0.73 ± 0.39,

median ± interquartile range). As increases in gamma-band power will lead to vasodilation

and increases in oxygenation, we quantified the positive peak of the gamma distribution fit-

ting. The positive peak of the smoothed HRF (time to peak = 2.99 ± 0.31 second, mean ± SEM,

n = 9 mice) and the full-width at half maximum of the HRFs (3.90 ± 3.35 seconds,

median ± interquartile range, n = 9 mice) were comparable to the dynamics of those seen in

previous measurements of cerebral oxygen dynamics [97,136] and BOLD fMRI [137,138].

We then tested how well the HRF predicted tissue oxygenation from neural data. We con-

volved the HRF with gamma-band power fluctuations using the second half of the data, to get

a simulated oxygen signal, which reflects the oxygen component predicted by neural activity

(S4 Fig). This model uses the same assumptions built into the analysis of BOLD fMRI data,

that the observed signal (oxygen concentration or BOLD) is a linear convolution of the neural

activity with an HRF [20,25,30,37,128]. We then compared the power spectrum between the

observed versus the predicted oxygenation, using data during periods including both rest and

locomotion. We found that the oxygen concentration predicted from the neural activity only

predicted a small amount of the variance (R2) of the signal (R2 = 0.04 ± 0.06, n = 9 mice). Fur-

thermore, the power spectrum of the oxygen fluctuations predicted from the neural activity

did not show the same frequency dependence as the actual oxygen fluctuations (Fig 4C and

4D; observed: 1.81 ± 0.38, predicted: 1.09 ± 0.44, paired t test, t(8) = 3.4059, p = 0.0093). Fur-

ther analysis using DFA reproduced these results (Fig 4E; observed: 1.41 ± 0.18, predicted:

1.11 ± 0.20, paired t test, t(8) = 2.8085, p = 0.0229). Note that the predicted power spectrum

was approximately 62% smaller than the actual power spectrum at frequencies below 0.1 Hz

(Fig 4C; paired t test, t(8) = 3.8597, p = 0.0048), indicating that putative nonneuronal compo-

nents contribute more to the frequencies below 0.1 Hz. These results are consistent with the

hypothesis that neural activity is not the dominant factor driving the 1/f-like dynamics in tis-

sue oxygenation. A fundamental assumption of both our experiments and the fMRI field is

that the HRF is stable over the course of minutes to hours. If the HRF changes substantially

over the course of tens of minutes, any hemodynamic signals from fMRI are uninterpretable

[139,140]. Consistent with this assumption, experimental measurements of HRFs in awake

mice have shown that they are stable over days and are not changed by behavioral state and

dynamics [30]. However, as there could be a heretofore unknown nonlinear relationship

between neural activity and oxygenation, we sought to probe this relationship by suppressing

local neural activity.

Impact of suppressing neural activity on tissue oxygenation 1/f-like

dynamics

While we found that the majority of the observed oxygen fluctuations could not be explained

by neural activity (Figs 3 and 4), if the relationship between neural activity and oxygenation is

not captured by the HRF, such as the nonlinearity of brain hemodynamics [141], then some

aspect of neural activity might still explain the oxygen fluctuations. To test this possibility

mechanistically, we pharmacologically silenced neural activity in the cortex [20,30], which will

also block increases in blood flow mediated by these increases in neural activity [20,30]. If the

1/f-like power spectrum in oxygen concentration goes away when neural activity is silenced,

this would suggest that the fluctuations are due to neural activity and the subsequent vasodila-

tion. If, however, the 1/f-like power spectrum is still present, this would suggest that these

oscillations have a nonneuronal origin. To mechanistically understand whether the observed
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1/f-like properties of oxygen signals is due to coherent neural activity fluctuations, we recorded

tissue oxygenation and LFP simultaneously (Fig 5A, S5 Fig). Application of 6-cyano-7-nitro-

quinoxaline-2,3-dione (CNQX)/(2R)-amino-5-phosphonopentanoic acid (AP5)/muscimol
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Fig 5. 1/f-like fluctuations persist when neural activity is suppressed. (A) Experimental setup. (B) Example traces showing PtO2 responses to locomotion at sites

170 μm below brain surface before (left) and after (right) application of CNQX/AP5/muscimol in the well over the craniotomy. Top, black tick marks denote

locomotion events; middle, PtO2 (black) and respiratory rate (orange) responses to locomotion; bottom, example of data showing spectrogram of LFP (cyan trace

showing the gamma-band power). (C) Comparison of resting gamma-band power of LFP and PtO2 fluctuations quantified with the SD of the signal. Black circles

and bars outside the axes show the population mean and SD. The dashed gray line is the unity line. Clustering of the points in the upper left corner shows a

pronounced decrease in the neural activity was not accompanied by a decrease in the amplitude of the oxygen fluctuations. (D) Power spectrum of tissue oxygen

signal before (black) and after (red) application of CNQX/AP5/muscimol using resting data (left) and data including both rest and locomotion (right). The dashed

line indicates the linear regression fit. Data are shown as mean ± SEM. (E) Power law exponent of tissue oxygen signal before (black) and after (red) application of

CNQX/AP5/muscimol using resting data (left) and data including both rest and locomotion (right). �paired t test, t(8) = 4.4711, p = 0.0021 (rest, n = 9 mice); t(8) =

2.5967, p = 0.0318 (rest and locomotion, n = 9 mice). (F) As (E) but for DFA scaling exponents. �paired t test, t(8) = 5.0287, p = 0.0010 (rest, n = 9 mice); t(8) =

2.9959, p = 0.0172 (rest and locomotion, n = 9 mice). Data in (E) and (F) are shown as median ± interquartile range using boxplot, with the sample mean shown as
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https://doi.org/10.1371/journal.pbio.3001298.g005
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significantly and substantially suppressed the gamma-band LFP power by 89% ± 8% (Wil-

coxon signed-rank test, p = 0.0039) and variance by 77% ± 21% (paired t test, t(8) = 5.0246,

p = 0.0010), but did not change the variance of the tissue oxygenation signal (Fig 5B and 5C;

paired t test, t(8) = 0.7542, p = 0.4723), which suggests that the magnitude of the brain tissue

oxygenation fluctuations were not reduced by silencing neural activity.

We then asked if the suppression of neural activity alters the 1/f-like characteristics of the

PtO2 power spectrum. If the oxygenation fluctuations are driven by neural activity, decreasing

neural activity should reduce the amplitude of the oxygen fluctuations. The power spectrum of

spontaneous oxygen fluctuations under artificial cerebrospinal fluid (aCSF) had a power law

exponent of 1.47 ± 0.47 (n = 9 mice) during rest. Application of CNQX/AP5/muscimol signifi-

cantly increased the power law exponent to 1.90 ± 0.27 (paired t test, t(8) = 4.4711, p = 0.0021;

Fig 5D and 5E) during rest. A significant increase of power law exponent was also observed

when using the entire dataset (aCSF: 1.84 ± 0.38; CNQX/AP5/muscimol: 2.10 ± 0.25; n = 9

mice, paired t test, t(8) = 2.5967, p = 0.0318; Fig 5D and 5E). The DFA scaling exponents

reported similar increases using data during rest (aCSF: 1.34 ± 0.19; CNQX/AP5/muscimol:

1.53 ± 0.11; n = 9 mice, paired t test, t(8) = 5.0287, p = 0.0010; Fig 5F), as well as using the

entire dataset (aCSF: 1.43 ± 0.17; CNQX/AP5/muscimol: 1.55 ± 0.11; n = 9 mice, paired t test,

t(8) = 2.9959, p = 0.0172; Fig 5F). Silencing neural activity did not affect the amplitude of oxy-

gen fluctuations below 0.1 Hz (aCSF: 7.04 ± 5.59 mm Hg2/Hz; CNQX/AP5/muscimol:

7.47 ± 6.60 mm Hg2/Hz; Wilcoxon signed-rank test, p = 0.8633), though there was a slight but

not significant decrease in the amplitude of oxygen fluctuations above 0.1 Hz during rest

(aCSF: 0.59 ± 0.31 mm Hg2/Hz; CNQX/AP5/muscimol: 0.37 ± 0.35 mm Hg2/Hz; Wilcoxon

signed-rank test, p = 0.1359). These results reflect that the infraslow (<0.1 Hz) oscillations in

brain oxygenation are not predicted by neural activity, which is consistent with the observation

that these oscillations are primarily not driven by neural activity (Fig 4C). Taken together,

these results show that suppressing neural activity did not abolish 1/f-like oscillations in tissue

oxygenation or decrease the amplitude of the oxygen fluctuations, suggesting that nonneuro-

nal contributions are a major driver of these dynamics. Notably, suppressing neural activity

does not change the 1/f-like dynamics in both broadband LFP and BLP fluctuations (S5 Fig).

Respiration is a major factor affecting brain oxygenation [20], and fluctuations in respira-

tion rate are known to drive substantial changes in BOLD fMRI signals [13,15,19,142]. If the

respiration rate shows 1/f-like dynamics [143], this could account for the fluctuations in oxy-

genation that we see in the tissue when neural activity was suppressed. We found no evidence

for 1/f-like dynamics in the respiration rate during rest (S6 Fig). Suppressing neural activity

did not affect the respiration dynamics during rest (n = 9 mice; fitted exponent for aCSF:

0.25 ± 0.11; CNQX/AP5/muscimol: 0.21 ± 0.13; paired t test, t(8) = 1.5758, p = 0.1537). When

estimated using data including both resting and locomotion, suppressing neural activity

slightly reduced the power law exponent (n = 9 mice; aCSF: 0.60 ± 0.19; CNQX/AP5/musci-

mol: 0.46 ± 0.21; Wilcoxon signed-rank test, p = 0.1359), partially due to the fact that suppress-

ing neural activity reduced the time mice spend locomoting. The DFA scaling exponent results

were consistent with those of the power spectrum exponent (S6 Fig). Specifically, after sup-

pressing neural activity, DFA scaling exponent of respiratory rate did not change using data

during rest (aCSF: 0.78 ± 0.04; CNQX/AP5/muscimol: 0.77 ± 0.05; n = 9 mice, paired t test, t

(8) = 0.6583, p = 0.5288) but reduced when it is estimated using the entire dataset (aCSF:

0.86 ± 0.06; CNQX/AP5/muscimol: 0.81 ± 0.06; n = 9 mice, paired t test, t(8) = 3.5835,

p = 0.0072). The lack of 1/f-like dynamics in respiration signals indicates that fluctuations in

blood oxygenation due to the fluctuations in respiration are not the origin of the observed 1/f-

like oxygen dynamics in the cortex.
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Role of RBCs spacing variations in generating 1/f-like tissue oxygenation

fluctuations

The vast majority of oxygen in the blood is carried by RBCs, with the plasma carrying a small

fraction of the total oxygen [88,93,95,96], which means that heterogeneities in RBCs densities

will cause changes in local oxygen supply [77,80,82,88,93–96]. It has long been appreciated

from theoretical models that the tissue oxygenation can vary with the passage of a single RBC,

creating an EAT in tissue oxygenation [76–92]. Recent high-resolution measurements of oxy-

genation with phosphorescent dyes have confirmed the existence of these transients [77,82,93–

96], but these measurements require aligning the signals to the passage of the RBCs and would

not be able to assay any slow oxygenation change that drive 1/f-like dynamics. Notably, oxy-

gen-sensitive electrodes used in the present study lack the temporal resolution to detect indi-

vidual EATs. As RBCs transit through the capillaries in single file flow, the tissue oxygenation

outside the capillary fluctuates with their density (Fig 6E). Interestingly, there are infrequent

“stalls” in RBCs flow in capillaries, caused by leukocytes transiently blocking flow [98–

100,103,144,145]. During a stall, a large RBC spacing will result in a sudden drop of tissue oxy-

genation within approximately 15 μm [123] of the capillary. As theoretical work has shown

that pulsatile time series generate 1/f-like spectra [146], we asked if the variations in RBCs den-

sity through single capillaries had 1/f-like dynamics.

To answer this question, we measured inter-RBCs spacing in capillaries using 2PLSM to

perform line scans along individual capillaries [147]. The plasma was labeled with a fluorescent

dye, and RBCs appear as dark streaks (Fig 6A). The pattern of RBCs and plasma was thre-

sholded and binarized to generate a train of point processes (Fig 6A). A “stall” event was

defined as an inter-RBC spacing greater than 1 second [103]. For the following power spec-

trum analysis and modeling, we only used RBCs spacing intervals during long resting seg-

ments (i.e.,�60 seconds; see Methods). For all the RBC intervals during long resting periods

(approximately 66 minutes data from 21 capillaries in 9 mice; 22.4 ± 30.7 ms,

median ± interquartile range; 95% confidence interval: [5.1 ms, 159.4 ms]), only approximately

0.06% RBC intervals are stall events (1.65 ± 1.32 second, median ± interquartile range; 95%

confidence interval: [1.01 second, 13.11 seconds]; Fig 6G). This rare occurrence of “stall”

events is consistent with previous work conducted in awake rodents [102,144] but smaller

than anesthetized rodents [102,103,105,144]. In addition, the consecutive RBC intervals are

correlated, i.e., a long RBCs interval tends to be followed by another long RBCs interval, and

vice versa (Fig 6B and 6C). We first quantified the nature of the power spectrum of RBC

arrival fluctuations during rest by fitting the power spectrum of the binarized data (0: plasma;

1: RBC) with a power law distribution in the 0.01 to 1 Hz frequency range. Binarization makes

sense, as the oxygen levels will be high as an RBC passes by, and low when there is only plasma

present. We observed 1/f-like dynamics of RBCs spacing, with the exponent range from 0.6 to

1.4 (0.91 ± 0.23, 21 capillaries in 9 mice, Fig 6B–6D). Note that the rare occurrence of RBCs

transient “stall” events did not significantly affect the fitted exponent (Fig 6D; 0.89 ± 0.24, 8

capillaries with stall events; 0.93 ± 0.23, 13 capillaries without stall events; two-sample t test, t

(19) = 0.3558, p = 0.7259).

We then developed a simple computational model (see Methods) to determine how the

delivery of oxygen by RBCs is affected by the statistics of RBC passages. Given the volume of

tissue sampled by the electrode [148], and the spacing of capillaries [123], the oxygen signal at

our electrode will be dominated by the nearest capillary. We generated a time series of RBCs

spacing utilizing data from our 2PLSM observations and data from previous studies [102,144].

We only considered the tissue oxygenation transients caused by the RBCs spacing. The RBCs

(with high PO2) and plasma gaps (with relatively low PO2) alternately passed through the
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Fig 6. RBCs spacing heterogeneity contributes to 1/f-like oxygen fluctuations. (A) Representative line scan images showing the RBCs spacing in 2 different

capillaries with (top) and without (bottom) stall events in an example mouse during rest. The images on the left showing the vasculature around the measurement

sites, as indicated by the magenta line. Scale bar = 50 μm. The magenta dots indicate the detected RBCs. (B) Left, Poincare plot showing the relationship between

consecutive RBC spacing intervals (i.e., autocorrelation trend) of capillary #1. The dark area indicates the density of the RBC spacing. Right, power spectrum for the

RBC spacing of capillary #1. The Poincare plot showing 3,341 RBCs in a 142.8-second resting period. (C) As (B) but for capillary #2. The Poincare plot showing

2,603 RBCs in a 100.4-second resting period. (D) Group average of power spectrum of inter-RBC transit time for data without stall events (black, n = 13 capillaries)

and with stall events (red, n = 8 capillaries). Inset, fitted power law exponent for each of the capillaries with (red circle) and without (black circle) stall events. (E)

Schematic showing that PO2 measured at the RBC border decreases with distance and reaches its lowest value between 2 RBCs. Orange line inside the capillary

denotes the oxygenation carried by the RBC and the plasma. The gray shaded area denotes brain tissue. Solid traces inside the gray shaded area denote PtO2 at

different distance away from the capillary wall (as indicated by the arrow). (F) Simulated data example showing the fluctuations of RBC spacing (top), oxygenation

in the capillary (middle, green), and oxygen in the tissue (bottom) generated by simulating a Krogh cylinder of 20 μm radius supplied by a capillary of 3 μm radius.

The orange trace (middle) denotes the simulated tissue oxygenation fluctuations close to the capillary wall, counting in the low-pass filtering nature of the oxygen

diffusion dynamics and the response properties of the polarographic electrode. The orange box denotes a 1-second segment of the dataset. The red tick marks

denote the passage of a single RBC. (G) Poincare plot showing the relationship between consecutive RBC spacing intervals for the simulated data example (left)

shown in (F) and all experimental data from 21 capillaries (right). (H) Comparison of power spectrum of tissue oxygenation measured using polarographic

electrodes (black) and generated using the simple model (red). The black trace denotes the median of all power spectrum from experiments. The edge of the gray

shaded area indicates the 75 percentiles and 25 percentiles of the experimental data. The red line denotes the mean (solid line) and the 95% CI (dashed line) from the
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capillary, and the EAT can be visualized by considering a fixed measurement site on the capil-

lary wall (Fig 6E). As the tissue response time is much slower compared to the RBC transit time

(due to the low-pass filtering nature of the oxygen diffusion dynamics), the oxygen delivery

from capillaries decays rapidly with distance at higher temporal frequencies. This means that

the tissue oxygenation will be a smoothed version of the EATs (Fig 6E). In the model, the RBCs

were considered as a point process, and the EATs surrounding each RBC were modeled using

an exponential decay (Fig 6E), based on the data measured using two-photon phosphorescent

imaging [93–96]. The tissue response time [83] was also considered when calculating the tissue

oxygen at different distances from the capillary wall, as oxygen delivery from capillaries decays

rapidly with distance at high frequencies of pulsatile flow in the vessels (Fig 6E).

We generated simulations of oxygenation of comparable durations as our experiments

using polarographic electrodes (approximately 40 minutes) and examined the power spec-

trum. Fig 6F illustrated a representative RBC train we modeled with 0.5% [102,144] stall events

and a power spectrum with a fitted exponent 1. For this specific example, based on measure-

ments in awake animals [95,96], we assumed that oxygenation of each RBC (PO2 = 80 mm

Hg) and oxygenation in each plasma gap (PO2interRBC = 28 mm Hg) were constant, giving

an EAT magnitude of 52 mm Hg. The generated data have shown that RBC spacing fluctua-

tions have long-range autocorrelations (Fig 6G), as seen in our experimental data (Fig 6B, 6C

and 6G). To further quantitatively validate this model, we generated 1,000 RBC time series,

each with a randomly assigned power law exponent based on our experimentally determined

range (Fig 6D). We then randomly assigned each RBC time series a flow rate, which will deter-

mine the EATs, based on previous studies [95,96], to simulate brain tissue oxygenation

dynamics. The simulations using the simple model showed very close agreement with our

experimental data (Fig 6H). Specifically, approximately 70% of the experimentally observed

power law exponent are covered by our model (95% confidence interval: [0.93, 1.60]). How-

ever, our model slightly underestimated the fluctuations below 0.2 Hz, as indicated by the devi-

ation between the power spectrum of the model and our experiments (Fig 6H). This partially

contributes to the smaller power law exponent reported by our model (model: 1.24 ± 0.21,

experimental data: 1.42 ± 0.19, Wilcoxon rank sum test, p< 0.0001). The underestimate of

power at approximately 0.2 Hz suggests that other slow or ultraslow processes [149], such as

vasomotion [30], cortical state changes, or crosstalk between the vasculature network

[150,151], contributing to the 1/f-like dynamics of brain tissue oxygenation (see Discussion).

Taken together, our simulations show that variations of RBC spacing alone can generate 1/

f-like oxygen fluctuations in the capillaries and surrounding tissue. This simple model points

to an intriguing possibility that the discrete nature of RBCs may play an important role in 1/f-

like dynamics of the oxygen levels. As the fluctuations of RBCs are largely attributed to non-

neuronal mechanisms [145,152], this suggests a nonneuronal origin of 1/f-like oscillations in

tissue oxygenation.

Discussion

We found that oxygen dynamics in the mouse cortex show large, low-frequency oscillations,

which were small or absent in the BLP of the LFP. These fluctuations were present in all corti-

cal layers and multiple regions both when the mouse was at rest and during behavior. These

fluctuations were weakly correlated with neural activity and persisted when neural activity was

pharmacologically suppressed. Simulations based on physiological measurements showed that

model. The magenta line denotes the deviation between the experimental and simulated data. The data used to generate this figure are available at https://doi.org/10.

5061/dryad.pg4f4qrmt. CI, confidence interval; RBC, red blood cell.

https://doi.org/10.1371/journal.pbio.3001298.g006
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the stochastic, correlated fluctuations in the number of RBCs could account for driving these

dynamics.

Our experimental observations and modeling have shown that RBCs spacing heterogeneity

could be a contributing factor to the 1/f-like dynamics of the brain tissue oxygenation. Using only

the temporal heterogeneity of RBCs, our model can generate the 1/f-like dynamics of oxygenation

in the capillary and nearby tissue that it supplies with oxygen (Fig 6). This simple model also

explains our observations of increased brain tissue oxygen power law exponent after CNQX/AP5/

muscimol infusion (Fig 5), as the suppression of neural activity has been shown to cause arterial

vasoconstriction leading to decreased flow through capillaries [44,153]. The decrease in flow will

increase the probability of long stall events [144], which should significantly contribute to the

brain oxygenation fluctuations at lower frequencies, as is seen in our experiments (Fig 5). Notably,

there are a variety of factors influencing RBC heterogeneity in a single capillary. In addition to

stalls in flow caused by vessel occlusion by leukocytes [98,99,103,105,144,145], the very nature of

the RBC-plasma suspension will drive low-frequency fluctuations in flow and RBC heterogeneity

[152,154]. RBCs have different rheological properties than the plasma [155,156], making the New-

tonian descriptions of fluid flow that works for larger vessels inapplicable to the flow through

capillaries. Because of the higher effective viscosity of RBC than the plasma, stochastic fluctuations

in the number of RBC in a vessel changes the effective resistance of the vessel, which can lead to

low-frequency fluctuations in RBC flow [152,154].

Though we modeled the RBCs and oxygenation dynamics in one single capillary, the

observed oxygen dynamics may reflect a network effort from different capillaries supplying

the same area [150–152,154]. In a capillary network, altered RBCs distribution due to capillary

dilation/constriction has been shown to be important for the local regulation of oxygen deliv-

ery [154]. Contractions of pericytes on the time scales of tens or hundreds of seconds [157]

could also regulate local RBC flows in individual capillaries. Fluctuations in flow could lead to

large fluctuations of oxygen supply [105]. Simulations of RBCs heterogeneity in skeletal muscle

also suggest that the capillary network is a source of spatial and temporal heterogeneity of RBC

flow, and increasing number of RBCs entering the network decreases the spatial heterogeneity

[158]. This more uniform RBC distribution will eliminate the slow, high-amplitude variations

of oxygenation, which will explain the observation that brain oxygenation has relatively less

low-frequency fluctuations at control compared to those after silencing neural activity (Fig 5).

Other potential drivers of 1/f-like oxygen fluctuations

While our work suggests that stochastic fluctuations in RBCs density could be an important

driver of 1/f-like fluctuations in tissue oxygenation, there are likely to be others. In addition to

the neurally controlled component of hemodynamics signals, brain hemodynamics are also

shown to be coupled to (and modulated by) other processes [149]. Fluctuations in hemody-

namic signals can arise from slow changes in arousal state or neuromodulation. Task-associ-

ated changes in cortical state have been shown to be associated with cerebral blood volume

change [159], and during sleep, there are arterial dilation-driven BOLD signal increases in the

cortex [131,160]. There is also evidence that cholinergic [161], dopaminergic [162,163], and

noradrenergic [129,164,165] signaling directly modulates vessel diameter. Although these neu-

romodulation input from subcortical nuclei can affect hemodynamic responses via modula-

tion of neuronal responses [166], they can also affect brain blood flow through direct

modulation of microvessels [167,168], via astrocytes [164,165] or perictyes [169]. Moreover,

spontaneous astrocytic calcium signals can also drive arteriole diameter change, which con-

tribute to slow oscillations of arteriole diameter (approximately 0.002 Hz in awake mice and

approximately 0.0002 Hz in anesthetized mice) [170]. Calcium signals in astrocyte endfeet can
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also be driven by spontaneous locomotion [165,171]. Another possible driver is the ongoing

vascular fluctuations, i.e., vessel autonomous oscillations in the arterial diameter, which have

been found in arteries throughout the body (see [149,172] for review). The spontaneous oscil-

lations in arterial diameters are independent of local neural activity and will additively interact

with vasodilatory signals from neurons to add “noise” to the hemodynamic signal, particularly

when the brain is at rest and neural activity is low [30], which will deviate the signal from pure

1/f-like [8]. Vasomotor oscillations in arteriole diameter drive oscillations in the velocity of

RBCs in microvessels [100] and changes in blood oxygenation in the brain [31,173]. Critically,

vasomotion is only slightly reduced in amplitude when cortical activity is silenced [30], show-

ing that these oscillations are independent of local neural control.

As the tissue oxygenation is determined by both the supply and consumption of oxygen,

fluctuations in oxygen consumption could potentially contribute to the fluctuations we

observe. However, there is evidence that the neurons that control blood flow are not necessar-

ily the most metabolically demanding ones. Optogenetic or chemogenetic stimulation of nitric

oxide synthase [174] expressing interneurons drives an increase in blood flow and arterial

diameter [44,175–177], minimal increase in cerebral metabolic rate of oxygen (CMRO2) [175],

with no increase (and usually a decrease) in electrical activity [44,175]. Optogenetic or chemo-

genetic stimulation of pyramidal neurons drives increases in electrical activity [44,175], mini-

mal increases in blood flow [175], and large increases in CMRO2 [175]. Fluctuations in the

consumption of oxygen by mitochondria have 1/f-like dynamics both at the single cell level

[178–181] and at a level of whole body oxygen consumption [182]. Moreover, measurements

in awake and sleeping cats have shown that existence of spontaneous oscillations of cyto-

chrome c oxidase redox state (an index of metabolism) in cortex that is not directly related to

neural activity [183]. In contrast to these in vivo studies, oxygen consumption by neurons in

rat hippocampal slices is closely tied to neural activity [184]. Note that oxygen levels in the

slices lack the fluctuations seen in perfused tissue and the neurons are inactive. This suggests

that metabolic activity that is unrelated to electrical signaling could be a potential contributor

to the observed oxygen 1/f-like dynamics. Therefore, these fluctuations in oxygen consump-

tions should be considered in light of the brain oxygen supply. Under normal physiological

conditions, the relative contribution of brain metabolism may be not that large, as the ratio

between changes in blood flow and cerebral metabolism (CBF/CMRO2) has been estimated to

be in the range of 2 to 4 (see [185] for review), which means a 10% consumption of oxygen will

be accompanied by 20% to 40% increase of blood flow.

Relating tissue oxygen signals to BOLD fMRI

How are the tissue oxygenation signals we recorded related to BOLD fMRI signals? Polaro-

graphic electrodes and BOLD fMRI sample oxygenation at different spatial and temporal

scales. Polarographic electrodes have higher temporal resolution than BOLD, though there are

fMRI paradigms that can image at higher resolution [134]. With our polarographic electrodes,

oxygen levels are recorded from a sphere of brain parenchyma approximately 20 μm in diame-

ter, and the temporal frequency is limited by a low-pass filter set to 1 Hz. Due to the small size

of the polarographic probe, our measurements reflect oxygenation at a single capillary level,

while BOLD signal primarily originates from the oxygenation of post-capillary blood vessels

(e.g., venules and pial veins) [22], which will report the average of oxygenation over a larger

section of tissue [136,186–188]. The BOLD signal in the veins will report the average of oxy-

genation of the capillaries feeding into them [189]. Because of this, the heterogeneity of RBCs

in a single capillary will likely not appreciably affect blood oxygenation oscillations in the

venous compartment, and, therefore, the BOLD signal. How exactly the RBCs heterogeneity
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caused oxygen fluctuations contribute to the 1/f-like dynamics in BOLD fMRI is still unclear.

Theoretical models have shown that changes of RBCs distribution in one capillary can affect

the RBCs distributions in other capillaries of the same network [152,154], which will change

the vascular resistance and capillary transit time heterogeneity [190,191], and further affect the

blood flow patterns and oxygen availability at the venous end [191]. Future work combing

simultaneous fMRI measures and tissue oxygenation would provide a definitive answer.

While there are likely to be differences between these 2 signals, the consensus of current

work is that polarography electrode measurements of oxygen in the tissue will give signals sim-

ilar to those observed with BOLD fMRI, especially for stimulus-evoked responses. In nonhu-

man primates, polarographic signals are highly correlated with BOLD signals obtained from

the same brain region [67], suggesting that the oxygen dynamics in the small volumes of tissue

measured by the polarographic electrode are similar to those in the veins. Oxygen-sensitive

dye measures in brain tissue also show similar dynamics to BOLD signals [192]. Finally, simu-

lations constrained by vascular oxygenation measurements have shown that the oxygen levels

in veins track capillary oxygenation very closely [136].

Limitations

Although our results suggest that the heterogeneity of RBCs spacing contribute to the 1/f-like

dynamics, there are known unknowns. How exactly the stalling events contribute to the

dynamics is uncertain. Specifically, how RBC stalling in one vessel affects other vessels in the

network is unclear. Is there a compensating increase of oxygen delivery in other vessels? How

the interaction among vessels in the capillary network [150,151,154,193–196] affects the 1/f-

like dynamics requires further investigation. In addition, one potential caveat of the study is

the degree to which the activity we observed is in the pure “resting-state” regime. While it is

possible to find relatively long intervals during which the mouse does not move (which we

defined as rest), this is not a pure resting state, and fidgeting behavior [107–109] may trigger

brain hemodynamic oscillations and contribute to 1/f-like dynamics in brain oxygenation.

Summary

Stochastic passage of RBCs could contribute to the 1/f-like dynamics in tissue oxygenation and

could potentially explain many disparate observations in the literature. It would explain why

1/f-like dynamics are seen in tissue oxygenations throughout the body, not only in the brain

[1,5,8,9], why we see similar oxygen dynamics across layers and cortical regions (Fig 1), even

though there are large differences in neural activity and vascular density across regions and

layers [123–125]. Finally, fluctuations in oxygenation generated by the stochastic passage of

RBCs are effectively “noise” and could explain the relatively low correlations and coherences

between oxygen and neural activity observed both in our experiments and in BOLD fMRI

measures [34,128,130,197]. Thus, the intermittent flow and stalling of RBCs could contribute

to fluctuations in oxygenation on the time scale of seconds to minutes, as well as potentially

driving neurodegenerative diseases [98,99,102,105,198,199].

Methods

Portions of the data used in this study have been published previously [20]. This study was per-

formed in strict accordance with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All procedures were performed in

accordance with protocols approved by the Institutional Animal Care and Use Committee

(IACUC) of the Pennsylvania State University (protocol #201042827).
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Animals

A total of 56 C57BL/6J mice (3 to 12 months old, 25 to 40 g, Jackson Laboratory, Bar Harbor,

Maine) were used. Recordings of laminar cortical tissue oxygenation were made from 37 mice

[23 (13 male and 10 female) in the somatosensory cortex (FL/HL) and 14 (7 male and 7 female)

in the FC] using Clark-type polarographic microelectrode. Simultaneous measurements of

cortical tissue oxygenation using polarographic electrodes, respiration, and LFP were con-

ducted in 9 mice [5 (4 male and 1 female) in FL/HL and 4 (2 male and 2 female) in FC]. Six of

these mice were also used for laminar cortical tissue oxygenation measurements. LFP and spik-

ing activity of different cortical layers were measured using laminar electrodes in a separate set

of 7 male mice (4 in FC and 6 in FL/HL, 3 mice were measured in both FL/HL and FC simulta-

neously). 2PLSM imaging was conducted in 9 mice (21 capillaries, 7 male and 2 female, in FL/

HL). Mice were given food and water ad libitum and maintained on 12-hour (7:00 to 19:00)

light/dark cycles. All experiments were conducted during the light period of the cycle.

Surgery

All surgeries were performed under isoflurane anesthesia (in oxygen, 5% for induction and

1.5% to 2% for maintenance). A custom-machined titanium head bolt was attached to the

skull with cyanoacrylate glue (#32002, Vibra-Tite, Troy, Michigan). The head bolt was posi-

tioned along the midline and just posterior to the lambda cranial suture. Two self-tapping 3/

32@ #000 screws (J. I. Morris, Oxford, Massachusetts) were implanted into the skull contralat-

eral to the measurement sites over the frontal lobe and parietal lobe. A stainless steel wire

(#792800, A-M Systems, Sequim, Washington) was wrapped around the screw implanted in

the frontal bone for use as an electrical ground for cortical tissue oxygenation and neural

recordings. For capillary blood flow velocity measurements using 2PLSM (n = 9 mice), a pol-

ished and reinforced thin-skull (PoRTS) window was made covering the right hemisphere as

described previously [20,24,30,59,112,200]. For simultaneous measurement of tissue oxygen-

ation and neural activity (n = 9 mice), we implanted 2 electrodes to measure LFP signals differ-

entially. Electrodes were made from Teflon-coated tungsten wire (#795500, A-M Systems)

with approximately 1 mm insulation striped around the tip. The electrodes were inserted into

the cortex to a depth of 800 μm at 45˚ angle along the rostral/caudal axis using a micromanipu-

lator (MP-285, Sutter Instrument, Novato, California) through 2 small holes made in the skull.

The 2 holes for the electrodes were made approximately 1 to 1.5 mm apart to allow insertion of

the oxygen probe between the 2 electrodes in following experiments. The holes were then

sealed with cyanoacrylate glue. Following the surgery, mice were then returned to their home

cage for recovery for at least 1 week and then habituated to head fixation on the spherical

treadmill. Habituation sessions were performed 2 to 4 times per day over the course of 1 week,

with the duration increasing from 5 minutes to 45 minutes.

Physiological measurements

Data from all experiments, except experiments using 2PLSM, were collected using custom

software written in LabVIEW (version 2014, National Instruments, Austin, Texas).

Behavioral measurement. The treadmill movements were used to quantify the locomo-

tion events of the mouse. The animal was also monitored using a webcam (Microsoft LifeCam

Cinema, Redmond, Washington) as an additional behavioral measurement.

Cerebral tissue oxygenation measurement using polarographic electrode. On the day of

measurement, the mouse was anesthetized with isoflurane (5% for induction and 2% for mainte-

nance) for a short surgical procedure (approximately 20 minutes). A small (approximately

100 × 100 μm) craniotomy was made over the FC (1.0 to 3.0 mm rostral and 1.0 to 2.5 mm lateral
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from bregma) or the FL/HL representation in the somatosensory cortex (0.5 to 1.0 mm caudal

and 1.0 to 2.5 mm lateral from bregma), and dura was carefully removed. The craniotomy was

kept moist with warm aCSF and porcine gelatin (Vetspon, Greenfield, Indiana). The mouse was

then moved to and head fixed upon the spherical treadmill. Oxygen measurements started at least

1 hour after cessation of anesthesia to minimize the effects of anesthesia [95,106,201].

Cerebral tissue oxygenation was recorded with a Clark-type oxygen microelectrode (OX-10,

Unisense A/S, Aarhus, Denmark). A total of 9 oxygen electrodes were used in this study, with an

average response time of 0.33 ± 0.11 seconds (n = 9 probes). No compensation for the response

delay in the electrode was made. The oxygen electrodes were calibrated in air-saturated 0.9%

sodium chloride (at 37˚C) and oxygen-free standard solution [0.1 M sodium hydroxide

(SX0607H-6, Sigma-Aldrich, St. Louis, Missouri) and 0.1 M sodium ascorbate (A7631, Sigma-

Aldrich) in 0.9% sodium chloride] before and after each experiment. The linear drift of the oxygen

electrode signal (1.86% ± 1.19% per hour) was corrected by linearly interpolating between pre and

postexperiment calibrations. The oxygen electrode was connected to a high-impedance picoam-

meter (OXYMeter, Unisense A/S, Aarhus, Denmark), whose output signals were digitalized at

1,000 Hz (PCI-6259, National Instruments). Current recordings were transformed to millimeters

of mercury (mm Hg) using the calibrations with air-saturated and oxygen-free solutions.

Oxygen electrodes allow long-duration, quantitative measurements of the average oxygen

tension from a small volume (approximately 20 μm radius) of parenchymal tissue. The stability

of the electrode provides long duration measurements, which are required to estimating the

power at ultralow frequencies. For oxygen polarography measurements, the oxygen microelec-

trode was positioned perpendicular to the brain surface and advanced into the cortex with a

micromanipulator (MP-285, Sutter Instrument). Measurement site was chosen to avoid large

pial vessels. The depth zero was defined as when the tip of the oxygen microelectrode touches

the brain surface under visual inspection. The probe was then advanced to depth of 100, 300,

500, and 800 μm below the pia, and 30 to 40 minutes data were recorded for each depth. After

advancing the electrode, we waited at least 5 minutes before the start of each recording.

In experiments investigating effects of suppressing neural activity on cortical tissue oxygen-

ation dynamics, a cocktail of ionotropic glutamate receptor antagonists CNQX (0.6 mM), NMDA

receptor antagonist AP5 (2.5 mM), and GABAA receptor agonist muscimol (10 mM) were applied

to suppress neural activity. All drugs were applied topically over the craniotomy and were allowed

to diffuse into the cortical tissue for at least 90 minutes before the oxygen measurements. The effi-

cacy of the CNQX/AP5/muscimol cocktail was validated with simultaneously recorded neural

activity. Neural data were amplified 1,000× and filtered (0.1 to 10k Hz, DAM80, World Precision

Instruments, Sarasota, Florida) and then sampled at 30k Hz (PCI-6259, National Instruments).

The oxygen signal in these experiments was recorded at a depth of approximately 100 to 200 μm.

In experiments investigating effects of suppressing neural activity on cortical tissue oxygen-

ation dynamics, respiration was also simultaneously recorded. Measurements of breathing

were taken using 40-gauge K-type thermocouples (TC-TT-K-40-36, Omega Engineering, Nor-

walk, Connecticut) placed near the mouse’s nose (approximately 1 mm), with care taken to

not contact the whiskers. Data were amplified 2,000×, filtered below 30 Hz (Model 440,

Brownlee Precision, Santa Clara, California), and sampled at 1,000 Hz (PCI-6259, National

Instruments). Downward and upward deflections in respiration recordings correspond to

inspiratory and expiratory phases of the respiratory cycle, respectively. We identified the time

of each expiratory peak in the entire record as the zero-crossing point of the first derivative of

the thermocouple signal.

At the end of the experiment, the mouse was deeply anesthetized, and a fiduciary mark was

made by advancing an electrode (0.005@ stainless steel wire, catalog #794800, A-M Systems)

into the brain with a micromanipulator to mark the oxygen measurement site.
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Laminar electrophysiology. Laminar electrophysiology recordings were performed in a sepa-

rate set of mice (n = 7). On the day of measurement, the mouse was anesthetized using isoflurane

(in oxygen, 5% for induction and 2% for maintenance). Two small (1 × 1 mm2) craniotomies were

performed over the FC (1.0 to 2.5 mm rostral and 1.0 to 2.5 mm lateral from bregma) and FL/HL

representation in the somatosensory cortex (0.5 to 1.0 mm caudal and 1.0 to 2.5 mm lateral from

bregma) over the contralateral hemisphere, and the dura was carefully removed. The craniotomies

were then moistened with warm saline and porcine gelatin (Vetspon). After this short surgical pro-

cedure (approximately 20 minutes), the mouse was then transferred to the treadmill where it was

head fixed. Measurements started at least 1 hour after the cessation of anesthesia [106,201].

Neural activity signals were recorded using 2 linear microelectrode arrays (A1x16-3mm-100-

703-A16, NeuroNexus Technologies, Ann Arbor, Michigan). The electrode array consisted of a

single shank with 16 individual electrodes with 100 μm interelectrode spacing. The signals were

digitalized and streamed to SmartBox via a SmartLink headstage (NeuroNexus Technologies).

The arrays were positioned perpendicular to the cortical surface; one was placed in the FL/HL,

and the other one was placed in the FC on the contralateral side. Recording depth was inferred

from manipulator (MP-285, Sutter Instrument) readings. The neural signals were filtered (0.1 to

10k Hz bandpass), sampled at 20k Hz using SmartBox 2.0 software (NeuroNexus Technologies).

Measuring RBC spacing in capillaries using 2PLSM. Two-photon imaging was performed

with a Sutter Moveable Objective Microscope. A MaiTai HP (Spectra-Physics, Santa Clara, Cali-

fornia) laser tuned to 800 nm was used for fluorophore excitation. Before imaging, the mouse was

briefly anesthetized with isoflurane (5% in oxygen), retro-orbitally injected with 50 μL of 70 kDa

fluorescein-conjugated dextran (Sigma-Aldrich) prepared at a concentration of 5% (weight/vol-

ume) in sterile saline to label plasma, and then fixed on a spherical treadmill. Imaging was done

with a 20X, 1.0 NA objective (Olympus, XLUMPFLN). Control of 2PLSM and data acquisition

was accomplished using MScan software (Sutter Instruments). All imaging with the water-immer-

sion lens was done with room temperature distilled water. Wide-field images were collected to

generate vascular maps of the entire window for navigational purposes. High-resolution images of

the vasculature were collected using a 500 μm by 500 μm field for measurement of capillary diam-

eter. Capillary diameter was measured using ImageJ software. To measure RBC velocity and RBC

spacing, line scan images were collected from individual capillaries. RBCs appeared as tilted dark

shadows on a bright background due to the fluorescein-conjugated dextran contained in the

blood plasma (Fig 6A), and these shadows were counted.

Data analysis

All data analyses were performed in MATLAB (R2015b, MathWorks, Natick, Massachusetts)

using custom code.

Locomotion events identification. Locomotion events [20,24,30,202] from the spherical

treadmill were identified by first applying a low-pass filter (10 Hz, fifth order Butterworth) to

the velocity signal from the optical rotary encoder, and then the absolute value of acceleration

(first derivative of the velocity signal) was thresholded at 3 cm/s2. Periods of locomotion were

categorized based on the binarized detection of the treadmill acceleration:

dðtÞ ¼ Hðjatj � acÞ ¼
1; jatj � ac
0; jatj < ac

(

where at is the acceleration at time t, and ac is the treadmill acceleration threshold.

Spontaneous activity. To characterize spontaneous (non-locomotion-evoked) activity,

we defined “resting” periods as periods at least 4 seconds after the end of previous locomotion

event and lasting no less than 60 seconds.
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Oxygen data preprocessing. Oxygen data from polarographic electrodes were first low-

pass filtered (1 Hz, fifth order Butterworth). The oxygen data were then downsampled to 30

Hz to align with binarized locomotion events.

Laminar neural activity. The neural signal was first digital filtered to obtain the LFP (0.1

to 300 Hz, fifth order Butterworth) and MUA (300 to 3,000 Hz, fifth order Butterworth)

[20,24,30]. Time-frequency analysis of LFP signal was conducted using multitaper techniques

(Chronux toolbox version 2.11, http://chronux.org/)) [114]. The power spectrum was esti-

mated with a 1-second window with approximately 1 Hz bandwidth averaged over 9 tapers.

MUA signals were low-pass filtered (5 Hz, Bessel filter). Spike rate was obtained by counting

the numbers of events that exceed an amplitude threshold (3 standard deviations (SDs) above

background) in each 1 ms bin.

To examine raw LFP or BLP modulations at different frequency bands, we first used a

third-order Butterworth filter to apply zero-phase bandpass filtering to the raw LFP according

to the following frequency bands: sub-alpha, 1 to 8 Hz; beta, 10 to 30 Hz; and gamma: 40 to

100 Hz. The resulting BLP signals were squared and full-wave rectified. They were then resam-

pled to 20 Hz after low-pass filtering below 1 Hz. These steps are illustrated in Fig 2B and 2C.

The spike train data were extracted from each channel of the laminar electrode. Firing-rate

signals in these data were smoothed with a Gaussian kernel with full-width at half maximum

of 10 ms to generate a continuous firing rate signal.

Magnitude-squared coherence. We used coherence analysis [203] to reveal correlated

oscillations and deduce functional coupling among different signals. The magnitude squared

ordinary coherence between 2 signals x and y are defined as

C2

xy fð Þ ¼
S2
xyðf Þ

Sxðf ÞSyðf Þ
;

where Sx(f) and Sy(f) are the autocorrelation spectra of the signals, and Sxy(f) is the cross-corre-

lation spectrum.

Quantifying the oxygen fluctuations predicted by the neural activity. We considered

the neurovascular relationship to be a linear time invariant system [37,139,204]. To provide a

model-free approach to assess the relationship between tissue oxygenation and neural activity,

HRF was calculated by deconvoluting tissue oxygenation signal to gamma-band LFP power,

using the following equation:

Hðkþ1Þ�1 ¼ ðL
TLÞ� 1LTVðmþkÞ�1

H is the HRF, and V is the tissue oxygenation signal. L is a Toeplitz matrix of size (m + k) × (k

+ 1) containing measurements of gamma-band LFP power (n):

Lðn⃑Þ ¼

1 n1 0 0 � � � 0
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To estimate how much variance of oxygenation the neural activity can predict, we first split

the observed data into 2 segments with equal length. We then calculated the HRF using the
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first half of the observed data. We smoothed the HRF using a Savitzky–Golay filter (third

order, 11-point frame length). Next, we convolved the HRF with the gamma-band LFP power

from the second half and estimated the oxygenation predicted by neural activity using the fol-

lowing equation:

O2 ¼ LFP� HRF þ ε:

The efficacy of the prediction was quantified by calculating the correlation coefficient (R)

between the prediction and actual oxygenation. The process was shown in S4 Fig.

Hemodynamic response function kernel fitting. To quantify the temporal features of

HRF, the HRF for tissue oxygenation was fitted using 2 gamma-variate fitting processes

[25,37,132–134] using 2 gamma-variate function kernels of the following form,

HRF t;Ti;Wi;Aið Þ ¼
P2

i¼1
Ai �

t
Ti

� �ai

�e
t� Ti
� bi

� �

;

where αi = (Ti/Wi)
2�8.0�log(2.0), bi ¼Wi

2=ðTi � 8:0 � logð2:0ÞÞ. For modeling HRF using a

gamma-variate function kernel, we used a downhill simplex algorithm minimizing the sum

square difference between measured and predicted hemodynamics. The goodness of fit was

quantified as R2 ¼ 1 �

P
ðHRFactual � HRFmodelÞ

2

P
ðHRFactual � �HRFÞ2

, where �HRF is the mean value of the actual HRF.

The amplitude (A), time-to-peak (T), and full-width at half maximum (W) of the kernel were

then calculated.

Modeling RBC spacing effects on tissue oxygenation

We identified the location of each RBC using custom code written in MATLAB from line scan

images using 2PLSM (Fig 6A). Data were first undergoing visual inspection of motion artifacts

to determine if the quality was sufficient for reliable RBC detection. To calculate the power

spectral density of RBCs train, we estimated using a function specifically for point processes

(Chronux toolbox function: mtspectrumsegpb). To estimate the RBC interval distribution, we

pooled all observed RBC intervals during rest from different animals (n = 9 mice) together to

determine the probability density function (PDF). However, it has been reported that only a

small number of segments (approximately 0.5%) experience a stall at any given instant in

awake mice [102,144], which makes the observation of capillaries with a cessation of RBC flow

challenging. It is also not practical to measure a large number of capillaries with a sufficiently

long duration to characterize the temporal dynamics using 2PLSM. To avoid the bias in esti-

mating the RBC spacing PDF due to the rare occurrence of “stall” events in our experiments,

we also estimated the PDF of “stall” events using data from [144]. Combining these 2 PDFs, we

estimated a new PDF of RBC intervals to generate a synthetic dataset (matlab function:

normrnd). In awake mice, the capillary RBC velocity is between 0.3 and 1 mm/s

[44,200,205,206]; to account in the RBC size (approximately 7 μm) [91] and to make the simple

model more physiological relevant, we excluded RBC intervals smaller than 10 ms using a

truncated normal distribution. As the observed consecutive RBC intervals are not totally ran-

dom and have a power law exponent ranging from 0.6 to 1.4 (Fig 6D), we then introduced

long-range autocorrelation using inverse Fourier transform [207].

Using the generated RBC train time series, we then simulated the oxygenation change

inside the capillary and in the nearby brain tissue (Fig 6E and 6F). In capillaries, RBCs travel

in single file, separated by plasma gaps of variable lengths, so the capillary blood is not a tem-

porally homogenous oxygen source to the surrounding tissue. We therefore assumed that (1)

the tissue is primarily oxygenated by the nearest capillary; (2) the space between RBC and
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capillary wall is minimal and that the capillary wall does not hinder the transport of oxygen;

therefore, the oxygen concentration profile is continuous between blood and tissue; (3) oxygen

transport within the tissue is assumed to be solely by molecular diffusion and governed by

Fick’s second law of diffusion; and (4) the rate of consumption of oxygen by the tissue sur-

rounding the capillary is constant. Under these assumptions, over time, the level of oxygen

within the tissue rises until the amount of oxygen lost by the passing cells converges to a quasi-

steady level. At this quasi-steady state, the oxygen level in the proximity of the capillary fluctu-

ates between a maximum reached just after the passage of a RBC and a minimum midway

prior to the arrival of the next RBC (Fig 6E and 6F). The amount of oxygen delivered by a

RBC to the tissue slice is the summation of the oxygen mass gained and consumed within the

tissue during its residence.

To keep the model tractable, the geometry of the erythrocytes was not considered (for a

more detailed model, see [91]), and the erythrocyte was treated as a point-like oxygen source

[78]. The oxygen tension for each RBC was set to be the same, and the diffusion of oxygen

from RBC to plasma was simulated with an exponential decay kernel measured in previous

experiments [93–96].

To model tissue oxygen responses, we simulated a vessel with 3 μm radius and a tissue cyl-

inder of 20 μm radius using Krogh cylinder model.

PtO2 ¼ PwO2þ
CMRO2

4atDt
r2 � R2 � 2Rt2ln

r
R

� �� �

where, Dt = 2,800 μm2/s [208], αt = 1.39 μM/mm Hg [209], CMRO2 = 3 μmole/cm3/min

[210]. As the transit time of RBCs is much faster than the tissue response time, the observed

oxygenation is further smoothed using the response time, which is given by R2ln r
R

� �
=ð2DtÞ

[83]. R is the outer radius, and r is the ratio of outer to inner radii. In this way, oxygen delivery

from capillaries decays rapidly with distance. As the oxygen probe samples a small region

around the tip, we averaged tissue oxygen data within 10 μm away from the location of the

probe. Finally, to account for the response time of the polarographic oxygen electrodes [20],

we smoothed the averaged oxygen trace with a low-pass filter.

Power spectral density and power law exponent

In the present study, we used a widely used power spectrum analysis for 1/f-like dynamics esti-

mation in both brain hemodynamics and electrophysiology [8,68,69,75,211,212]. The power

spectrum density (PSD) was obtained using the multitaper technique [114]. We tried to fit the

power spectrum of oxygen/electrophysiology signal with a power law distribution using ordi-

nary least squares regression (without additional weighting in the fitting algorithm). However,

when linearly spaced frequency bins are considered under a logarithmic scale, bins in higher

frequencies become progressively denser and thus gain disproportionate weight with respect

to lower-frequency bins in a subsequent linear regression. To avoid this potential bias, we

upsampled the PSD curve with logarithmically spaced frequency bins, resulting in equally

spaced frequency bins under logarithmic scale, required to properly estimate the spectral expo-

nent. We then used the simple ordinary least squares regression to the resampled PSD in order

to increase comparability to other studies [8,68,69,75,211].

Detrended fluctuation analysis

Although a power law fit can provide relatively good fit to the brain oxygenation power spectrum,

to rigorously test the hypothesis that brain hemodynamic signals are 1/f-like, we also used a time-

domain method, DFA [115], which complements the above frequency-domain approach.
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The DFA procedure measures the amount of fluctuation F(n) of detrended integrated signal

at different length scales, thereby revealing the scaling properties of the signal. The method cal-

culates the fluctuation amplitude, F(n), as a function of time scale n. Specifically, for a time

series {xi, i = 1,2,. . .,N}, DFA performs the following processes: (1) we removed the global

mean and integrating the time series by Xt ¼
Pt

i¼1
ðxi � �xÞ, where �x denotes the mean values

of the time series xi; (2) we divided the integrated signal Xt into nonoverlapping windows of

the same chosen size n; (3) we detrended the integrated signal Xt in each window using poly-

nomial functions to obtain residuals by X̂t ¼ Xt � Yt, where Yt denotes the trend obtained by

polynomial fit and X̂t denotes the integrated time series after detrending; and (4) we calculated

the root mean square of residuals in all windows as detrended fluctuation amplitude using

F nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

PN
t¼1
X̂t 2

q

. The same steps above are repeated for different time scales n. The sec-

ond order of polynomial function was used to detrend data in step 3 to eliminate the effect of

possible linear trends in original data. A power law form of F(n), where F(n)/nα, indicates a

1/f-like structure in the fluctuations. The parameter α, called the scaling exponent, quantifies

the temporal correlation as follows [126,127]: if α = 0.5, there is no correlation in the fluctua-

tions (“white noise”); if α>0.5, there are positive correlations, where large values are more

likely to be followed by large values (and vice versa); if α<0.5, there are negative correlations,

where large values are more likely to be followed by small values, and vice versa. Notably, the

DFA method has the particular advantage of being applicable to both stationary and nonsta-

tionary data.

Goodness of fit test

The goodness of fit was quantified with coefficients of determination (R2).

Alternative model comparisons

Independent of whether power law model is a statistically good model, nevertheless, its non-

power law alternatives may be a better model. To verify this, we compared the fit of alternative

models, specifically, an exponential distribution and a log-normal distribution, to the power

spectrum and DFA scaling results of different signals. We compared these models using

Akaike information criterion (AIC), which is a common approach for selecting the best model

among a set of fitted models. If all the models in the set assume normally distributed errors

with a constant variance, then AIC can be easily computed from least squares regression statis-

tics as

AIC ¼ n logðŝ2Þ þ 2K;

where ŝ2 ¼

P
�̂2
i

n , and �̂2
i are the estimated residuals for a particular candidate model. ŝ2 is the

maximum likelihood estimation of the sum of squared residuals σ2, K is the total number of

estimated regression parameters, including the intercept and σ2. As we have relatively small

dataset, we used a second-order variant of AIC (AICc) to compare models:

AICc ¼ AICþ 2KðKþ1Þ

n� K� 1
. All alternative models used here have exactly 3 parameters, i.e., slope,

intercept, and error term.

For each dataset, we compared the power law model’s AICc score with the AICc score of

each alternative distribution, deriving ΔAICc. Following standard practice, if ΔAICc< 2, we

conclude that there is little or no statistical evidence that the models fit the data differently. In

this case, we say that the comparison is inconclusive and cannot distinguish between the 2
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models. Otherwise, when ΔAICc> = 2, we conclude that the model with the lower AICc value

provides the better fit to the data.

Evaluating analysis methods on synthetic data with ground truth

To demonstrate the suitability of power spectral analysis and DFA as a method to estimate

power law scales of the same length as the signals used in our analysis, as well as the goodness

of fit paradigm, we simulated time series with a stochastic Gaussian process of known long-

range temporal dependence (fractional Gaussian noise). The power spectra of different types

of signals are shown in S1 Fig. White noise (S1 Fig, panel A) has a flat power spectrum whose

slope is near 0. Periodic noise (S1 Fig, panel B) shows a flat spectrum, with the exception of a

large bump at 0.2 Hz, the center frequency of the large oscillations. In contrast, 1/f-like noise,

generated using a circulant embedding method [213], shows power decreasing with frequency

when the power spectrum is plotted on a log–log scale (S1 Fig, panel C). Summation of a peri-

odic signal with a 1/f-like signal produces a hybrid spectrum (S1 Fig, panel D).

Control recordings and analyses

Because fluctuations of resistivity in electronic conducting materials also exhibit 1/f noise

[120,121], it is important to demonstrate that our data were not contributed by instrument

noise. To address this, we measured PtO2 in one mouse postmortem using the same experi-

mental setup. The power spectrum of these recordings had flat slope, characteristic of white

noise (Fig 1C). This is further confirmed by DFA analysis (Fig 1D).

Statistical analysis

Statistical analysis was performed using MATLAB. All summary data were reported as the

mean ± SD unless stated otherwise. For visual representation of the data, we utilized box-and-

whiskers plot (MATLAB function: boxplot) to illustrate the spread and differences of samples.

The box shows the median ± interquartile range, and the whiskers show the data point that is

no more than 1.5 times interquartile range (i.e., Tukey style). We also plotted sample mean to

communicate more information about the dataset. Normality of the samples were tested

before statistical testing using Anderson–Darling test (MATLAB function: adtest). For com-

parison of multiple populations, the assumption of equal variance for parametric statistical

method was also tested (MATLAB function: vartest2 and vartestn). If criteria of normality and

equal variance were not met, parametric tests (t test and one-way ANOVA) were replaced with

a nonparametric method (Mann–Whitney U test, Wilcoxon signed-rank test, and Kruskal–

Wallis ANOVA). All p values were Bonferroni corrected for multiple comparisons. Signifi-

cance was accepted at p< 0.05.

Supporting information

S1 Fig. Illustration of white noise, periodic, and 1/f-like signal. (A) An example of white

noise (left), its power spectrum (middle), and DFA results (right). The solid black line in the

middle and right subplots denotes the ordinary least squares regression fit. (B) An example of a

periodic signal with peak frequency centered at 0.2 Hz (left), its power spectrum (middle), and

DFA results (right). The DFA scaling is clearly deviated from a linear fit. (C) An example of

fractional Gaussian noise (i.e., 1/f-like) with Hurst exponent = 0.9 (left), its power spectrum

(middle), and DFA results (right). (D) An example of additive signal combining fractional

Gaussian noise and periodic signal (left), its power spectrum (middle), and DFA results (right).

The data used to generate this figure are available at https://doi.org/10.5061/dryad.pg4f4qrmt.
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DFA, detrended fluctuation analysis.

(EPS)

S2 Fig. 1/f-like power spectra of broadband LFPs and spike rate. (A) Experimental setup.

Top, schematic showing all laminar electrophysiology measurement sites in FC (n = 4 sites)

and FL/HL (n = 6 sites). Bottom, schematic showing the layout of the electrodes and measure-

ment depth. (B) An example trace showing the broadband LFP at different cortical depths in

the FL/HL. (C) An example trace showing the MUA at different cortical depths in the FL/HL

in the same trial as (B). (D) Top, power spectrum of broadband (1–100 Hz) LFP across cortical

depth during rest (left) and periods including rest and locomotion (right). Bottom, power law

fit exponent. (E) As (D) but for spike rate. For better visualization and comparison between

these signals, the power spectrum curves in (D) and (E) have been vertically shifted between

different cortical depths. The shaded area is shown as mean ± SEM in (D, top) and (E, top).

Data in (D, bottom) and (E, bottom) are shown as median ± interquartile range using boxplot,

with the sample mean shown as dashed lines. The data used to generate this figure are available

at https://doi.org/10.5061/dryad.pg4f4qrmt. FC, frontal cortex; FL/HL, forelimb/hindlimb;

LFP, local field potential; MUA, multiunit activity.

(EPS)

S3 Fig. BLP in sub-alpha and beta frequency bands are not 1/f-like. Related to Fig 2. (A)

Experimental setup. (B) Normalized (by total power between 0.01–1 Hz) power spectrum of

the beta-band power of LFP at different cortical depths. Dashed line denotes the linear regres-

sion fit of the power. (C) As (B) but for sub-alpha band power of LFP. Data are shown as

mean ± SEM in (B) and (C). For better visualization and comparison between these signals,

the power spectrum curves in (B) and (C) have been vertically shifted between different corti-

cal depths. (D) Group average (n = 9 sites) of power law exponent for power spectrum of BLP

in beta frequency band across different cortical layers during periods of rest (left) and periods

including both rest and locomotion (right). (E) As (D) but for BLP in sub-alpha frequency

band. (F) Group average (n = 9 sites) of DFA scaling exponent across different cortical layers

during periods of rest (left) and periods including both rest and locomotion (right). (G) As (F)

but for BLP in sub-alpha frequency band. In (D–G), gray circles denote the measurements in

FL/HL (n = 6 sites), while the orange circles denote the measurements in FC (n = 3 sites). Data

in (D–G) are shown as median ± interquartile range using boxplot, with the sample mean

shown as dashed lines. The data used to generate this figure are available at https://doi.org/10.

5061/dryad.pg4f4qrmt. BLP, band-limited power; DFA, detrended fluctuation analysis; FC,

frontal cortex; FL/HL, forelimb/hindlimb; LFP, local field potential.

(EPS)

S4 Fig. Illustration of the deconvolution and convolution process. Related to Fig 4. To esti-

mate how much variance of oxygenation the neural activity can predict, we first split the

observed data (approximately 40 minutes) into 2 segments of equal length. We then calculated

the HRF using the first half of the observed data. To increase the signal-to-noise level of the

HRF, we smoothed the HRF using a Savitzky–Golay filter (third order, 11-point frame length).

Next, we convolved the HRF with the gamma-band LFP power from the second half and esti-

mated the oxygenation predicted by neural activity (orange line). HRF, hemodynamic

response function; LFP, local field potential.

(EPS)

S5 Fig. Impact of pharmacological silencing on neural dynamics. Related to Fig 5. (A)

Experimental setup. (B) Normalized (by total power between 1–100 Hz) power spectrum of

broadband LFP signal before (black) and after (red) application of CNQX/AP5/muscimol
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using data during rest (left) and using data including rest and locomotion (right). (C) Group

average (n = 9 mice) of fitted power law exponent of broadband LFP. (D) Normalized (by total

power between 0.01–1 Hz) power spectrum of gamma-band power of LFP before (black) and

after (red) application of CNQX/AP5/muscimol using data during rest (left) and using data

including rest and locomotion (right). (E) Group average (n = 9 mice) of power law exponent

of BLP for gamma-band LFP. (F) As (E) but for DFA scaling exponent. Data are shown as

mean ± SEM in (B) and (D). In (C), (E), and (F), gray circles denote measurements in FL/HL

(4 mice), and orange circles denote measurements in FC (5 mice). Data in (C), (E), and (F) are

shown as median ± interquartile range using boxplot, with the sample mean shown as dashed

lines. The data used to generate this figure are available at https://doi.org/10.5061/dryad.

pg4f4qrmt. AP5, (2R)-amino-5-phosphonopentanoic acid; BLP, band-limited power; CNQX,

6-cyano-7-nitroquinoxaline-2,3-dione; DFA, detrended fluctuation analysis; FC, frontal cor-

tex; FL/HL, forelimb/hindlimb; LFP, local field potential.

(EPS)

S6 Fig. Power spectrum and DFA of respiratory rate fluctuations. (A) Power spectrum of

respiratory rate fluctuations before (black) and after (red) application of CNQX/AP5/musci-

mol using resting data (left) and data including both rest and locomotion (right). Data are

shown as mean ± SEM. (B) Power law exponent of respiratory rate fluctuations before (black)

and after (red) application of CNQX/AP5/muscimol using resting data (left) and data includ-

ing both rest and locomotion (right). (C) As (B) but for DFA scaling exponent. �paired t test, t

(8) = 3.5835, p = 0.0072. In (B) and (C), gray circles denote measurements in FL/HL (4 mice),

and orange circles denote measurements in FC (5 mice). Data in (B) and (C) are shown as

median ± interquartile range using boxplot, with the sample mean shown as dashed lines. The

data used to generate this figure are available at https://doi.org/10.5061/dryad.pg4f4qrmt. AP5,

(2R)-amino-5-phosphonopentanoic acid; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione;

DFA, detrended fluctuation analysis; FC, frontal cortex; FL/HL, forelimb/hindlimb.

(EPS)

S1 Table. Comparison of power law and alternative distributions fit.

(DOCX)

S2 Table. Goodness of fit for each physiological time series.

(DOCX)

S1 Text. Supplementary results.

(DOCX)
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