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Abstract
Oxygen is critical for neural metabolism, but under most physiological conditions, oxygen levels in the brain are far more 
than are required. Oxygen levels can be dynamically increased by increases in respiration rate that are tied to the arousal state 
of the brain and cognition, and not necessarily linked to exertion by the body. Why these changes in respiration occur when 
oxygen is already adequate has been a long-standing puzzle. In humans, performance on cognitive tasks can be affected by 
very high or very low oxygen levels, but whether the physiological changes in blood oxygenation produced by respiration 
have an appreciable effect is an open question. Oxygen has direct effects on potassium channels, increases the degradation 
rate of nitric oxide, and is rate limiting for the synthesis of some neuromodulators. We discuss whether oxygenation changes 
due to respiration contribute to neural dynamics associated with attention and arousal.
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Introduction

Our state of mind is reflected in our breathing patterns. We 
breath rapidly when excited or scared, slowly when calm, 
and a surprise can make us gasp. Why we change our breath-
ing patterns so drastically cannot be explained by metabolic 
concerns alone, and has been a long-standing mystery. There 
is a growing body of work showing that these changes in 
breathing can dynamically modulate blood oxygenation [22, 

79], and by consequence the oxygenation in the brain [123]. 
Given that the baseline supply of oxygen to the brain has a 
large safety margin that can easily accommodate the meta-
bolic demands of increases in neural activity, the reason for 
these changes in respiration (as well as increases in the local 
flow of oxygenated blood due to changes in neural activity in 
the brain via neurovascular coupling) remains unexplained.

Here we review the speculative hypothesis that changes in 
local tissue oxygenation linked to normal respiratory fluctua-
tions modulate neural activity in the brain. Experiments in 
humans have shown that un-physiologically high levels of 
blood oxygenation can improve cognitive performance [13] 
and low levels of oxygenation (like those that occur at high 
altitude) can impair performance [28, 60], but whether the 
smaller changes in tissue oxygenation induced by changes in 
respiration (on a breath-by-breath basis and those caused by 
a change in respiratory rate) can have a meaningful effect is 
not known. In this hypothesis, oxygen functions like a neu-
romodulator, and respiration-driven changes in the level of 
oxygen [123] can affect the excitability of neurons, via direct 
actions on ion channels and by increasing the synthesis rate 
of many different neuromodulators. Like other canonical 
neuromodulators, oxygen levels are largely controlled by 
the activity of a small group of neurons that have recip-
rocal connections with other neuromodulatory nuclei [21, 
116, 118, 119]. The physiological processes that modulate 
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brain oxygenation are modulated by sensory stimuli, arousal 
levels, and cognitive demands [92], just like other neuro-
modulatory signals. Un-physiologically large increases or 
decreases in oxygen can drive changes in cognition [60], as 
is seen when levels of neuromodulators are changed phar-
macologically. We note that these effects of respiration on 
neural activity via oxygen could co-exist both with direct 
neural drive in respiratory and olfactory areas to other brain 
regions [104, 121] and local oxygenation changes driven 
by neurovascular coupling and functional hyperemia [19, 
63]. However, the effects we propose here would be distinct 
from directly mediated synaptic signaling (as inhalation 
cycle-linked oscillations [104]) and could be independ-
ent of changes in local blood flow (as in the hemo-neuro 
hypotheses [63]). The effects of oxygen on the brain that we 
discuss will depend on tissue oxygenation, which will be 
related to (but not the same as) hemoglobin saturation. The 
effects we discuss here could also act in parallel to (but dis-
tinct from) any changes in neural excitability caused by pH 
shifts secondary to changes in carbon dioxide levels which 
could impact neural excitability [5, 50]. The amplitude and 
frequency of breath-related oxygen fluctuations will vary 
with species- and individual-specific breathing differences, 
and will also be impacted by the physiological state of the 
lung (dead space, etc.). Below we discuss the possibility that 
oxygen can function in a modulatory fashion in the brain.

Baseline oxygen levels can supply all 
the metabolic needs of neurons

In many brain regions (but not all—[40, 91, 123]), sensory 
stimulation drives an increase in neural activity followed 
by local vasodilation (as known as functional hyperemia) 
mediated by many signaling mechanisms from neurons 
and other cells in the brain [89]. While this increase in 
flow is often attributed to the need to supply oxygen to 
active neurons, the increased oxygen is not necessary and 
usually greatly exceeds neuronal demands [53, 58, 62]. 
This clear oversupply of oxygen can be revealed with the 
application of vasoconstrictors like indomethacin [96] and 
caffeine [115], which can decrease cerebral blood flow by 
30% without changing metabolism or any adverse cogni-
tive consequences, consistent with a large safety margin in 
oxygen delivery. In anesthetized preparations, some brain 
areas even show inverted neurovascular coupling, with 
increases in activity driving vasoconstriction and oxygen 
decreases [16, 86, 94, 95]. Anticipation of a stimulus can 
also drive increase in blood flow without increases in local 
neural activity [97], suggesting the existence of other pre-
paratory mechanism in the brain that brings arterial blood 
to the cortex, other than to meet the metabolic demand 
generated by local neural activity. Vasodilation/blood flow 

increases can be elicited by the activation of a small set 
of neurons that express nitric oxide synthase without acti-
vation of other neurons in the cortical network [20, 49, 
52], showing that the overall metabolic demands are dis-
connected from the neural control of the vascular system. 
The lack of tight coupling of the local regulation of blood 
flow to metabolism in so many instances suggests that the 
flow increases might serve other purposes than to supply 
a pressing metabolic need, an idea that has been noted 
previously [37, 53]. It has been proposed that increase in 
flow with neurovascular coupling is not to service the bulk 
of the tissue, but regions where flow is limited [17, 53]. 
However, simulations have suggested that increasing blood 
flow does not actually remove low flow regions, but rather 
relocates them, suggesting that functional hyperemia may 
not even remove these regions of lower oxygenation, but 
only shift them [80]. This unintuitive change of perfusion 
further suggests that increases in oxygenation are not spe-
cifically to meet metabolic demands.

Whether increasing oxygenation in the brain affects 
metabolic activity depends on whether the production of 
ATP is limited by the concentration of oxygen. It is largely 
assumed that under physiological conditions, oxygen levels 
are far from rate limiting for neural metabolism, and increas-
ing oxygen does not result in the increased production of 
ATP, as mitochondrial oxidative phosphorylation is satu-
rated by oxygen concentrations well below 1 mmHg [29, 54, 
108]. The oxygen dependence of mitochondrial oxidative 
phosphorylation depends on intracellular pH, and oxygen 
dependence becomes noticeable with alkaline pH [112]. 
However, the intracellular pH in the brain is near 7 [12, 67]. 
In the physiological pH range, the oxygen becomes limiting 
below a few mmHg (~ 3 mmHg), still well below the state 
in most of the tissue. Supporting the idea that mitochon-
drial oxidative phosphorylation in the brain is not limited by 
oxygen levels, hyperoxia does not increase brain metabolic 
rate [114] (though these are bulk measures that may not 
detect elevations of metabolism in small, poorly oxygen-
ated regions). Systemic arterial oxygen levels of less than 
20 mmHg (well below normal levels of ~ 90 mmHg [56]) 
are required to detectably decrease ATP levels in the brain 
[28]. Furthermore, measurements of mean cortical oxygen 
levels in the blood plasma (which will be higher than that 
in the tissue) in the cortex typically find oxygen concentra-
tions in the range of 20–50 mmHg [11, 56, 85, 123]. In the 
extracellular space of the cortex, tissue oxygen levels are in 
the range of 10 to 40 mmHg, though the levels can be much 
higher immediately adjacent to arteries [17, 87], and veins 
passing near arteries can become oxygenated through dif-
fusional shunting of oxygen [51]. While a small fraction of 
tissue may show oxygen levels below ~ 5 mmHg [56, 123], 
this is still far above the levels at which oxygen is limiting 
for ATP production.



Pflügers Archiv - European Journal of Physiology 

1 3

Oxygen levels impact neuronal excitability 
via effects on ion channels

Neuromodulators typically function to make distinct cell types 
more or less excitable, altering their responses to stimuli and 
changing network output [18, 34]. While the oxygen sensi-
tivity of neurons is often explored in the context of hypoxia, 
oxygen levels in neural tissue can fluctuate within the physi-
ological range [56, 123], often following changes in neural 
activity (functional hyperemia), during exercise, or in phase 
with breathing [122, 123]. One tempting hypothesis is that 
the fluctuations in blood oxygenation due to alternating inspi-
ration and expiration, as well as elevations and depression 
of respiration cycle-averaged blood oxygen over longer time 
scales, could modulate neuronal excitability and activity pat-
terns. As most of the work we discuss here have been done 
in slices, one should bear in mind that the normal oxygen 
tension in slice experiments (where ionic mechanisms are 

probed) can be much higher than measured in vivo [43, 41]. 
With in vitro experiments, the oxygen gradient as a func-
tion of depth in the slice can be very large (~ 100 mmHg per 
100 µm tissue) [8, 33, 43], leading to great heterogeneity of 
the measure due to effects of changing oxygen levels. As a 
result, in vitro conditions described as “normal or hypoxic” 
may range from hyperoxia to anoxia.

Several ion channels expressed widely in the brain are 
known to be sensitive to oxygen levels via a variety of 
mechanisms (Fig. 1). TASK-1 and 3 channels (both hetero- 
and homodimers) are inhibited by hypoxia [9, 105]. The 
channels are found in the carotid bodies and their activity 
contributes to (but is not necessary for) oxygen sensing 
[73]. A decrease in oxygen inhibits mitochondrial electron 
transport and subsequently leads to TASK channel inhibition. 
TASK-1 and 3 are also found in neurons in the basal forebrain 
[101, 109], and single cell RNA sequencing has shown these 
channels are expressed by thalamic interneurons, cholinergic 

Fig. 1  Schematic showing 
different pathways by which 
oxygen can modulate neural 
excitability. Top, oxygen levels 
in major supply arteries oscil-
late on a breath-by-breath basis, 
as well as showing an overall 
increase with respiration rate. 
Scale is for expected values in 
a mouse. Respiration shows 
idealized measurement from a 
thermocouple, with upswings 
representing exhalation. Bot-
tom left, oxygen modulates 
K + channels and TASK activity 
in neurons. Bottom middle, 
oxygen modulates tryptophan 
hydroxylase (TPH) synthesis of 
serotonin (5-HT) and tyrosine 
hydroxylase (TyrH) synthesis of 
dopamine (D) and norepineph-
rine (NE). Coloration of neu-
rons is aesthetic. Bottom right, 
oxygen decreases nitric oxide 
(NO) concentrations which 
modulates neural activity
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interneurons, and serotonergic neurons [120] (Fig.  1). 
Kv3 channels are also sensitive to oxygen levels [74] and are 
expressed by cortical and hippocampal excitatory and inhibitory 
neurons [45] (Fig. 1). A depression of oxygen levels will cause 
 K+ channel inhibition. In addition to potassium channels, L-type 
calcium channels are also thought to contribute to oxygen 
sensitivity in peripheral tissue [111]. Cells in the vasculature 
(smooth muscle, endothelial cells, and red blood cells) are also 
thought to be sensitive to oxygen, though the mechanisms are 
not clearly understood (see [42] for review). Changes in vessel 
tone require changes in the membrane potential [36], implying 
the activation of ion channels. While the molecular mechanisms 
linking oxygen levels to ion channel opening and closing are not 
well understood, several pathways have been implicated, including 
both NADPH oxidase-dependent mitochondrial superoxide 
anion generation and changes in the ratio of reduced to oxidized 
glutathione [55]. Other possible mechanism includes changes in 
prostaglandin levels and nitric oxide (discussed below). The net 
effect of oxygen levels would depend on the relative distributions 
of oxygen-sensitive ion channels in excitatory and inhibitory 
neurons, as is the case with many neuromodulators.

At the cellular level, neurons and glial cells, located in 
the medulla oblongata and hypothalamus, are able to sense 
oxygen levels and modulate respiratory rhythm accordingly 
[3, 69]. Though the mechanisms underlying these oxygen-
induced changes are not completely understood, this dem-
onstrates that some cells of the brain are able to change their 
activity in response to oxygen levels. Recent studies have 
shown that astrocytes (including astrocytes in the cortex, 
which are not traditionally thought of as oxygen-sensing 
cells) respond to oxygen changes with altering calcium sig-
nals [3, 106] and modulating the respiratory network activity 
[3, 4, 30, 31]. Given that astrocytes display regional diver-
sity at the molecular and functional levels in the brain [7], 
astrocytes could vary in oxygen sensitivity according to their 
cellular function and metabolism.

Oxygen levels impact the level 
of the neuromodulator nitric oxide

In addition to any direct actions oxygen has on neuron 
excitability, oxygen has an antagonistic relationship with nitric 
oxide (NO). While increases in NO will increase oxygenation 
(via its vasodilatory actions), increased tissue oxygen facilitates 
the removal of NO that is linearly dependent on the oxygen 
concentration [103] (Fig. 1), creating a negative feedback loop 
important for equilibrium. Although the presence of central 
oxygen sensors in the CNS is a topic of debate, hypoxia will 
dilate and hyperoxia will constrict cerebral arterioles via 
modulation of NO levels [1, 38, 82, 84]. These blood flow effects 
occur even under isocapnic conditions [66, 107] and constant pH 
[83], which demonstrates that the traditional indirect sensing 

mechanisms of hypoxia via pH and  CO2 are not required for 
hypoxia-induced vasodilation. The oxygen-dependent rate of 
NO removal in the tissue may be an additional mechanism of 
maintaining oxygenation under hypoxic conditions [35].

In addition to its cerebrovascular effects [39], NO can 
greatly affect neural excitability and has been shown to 
increase the activity of neurons in the cortex [46], cerebellum 
[99], and other brain areas [24, 86]. Nitric oxide synthases, 
which produces NO, are found in the vascular endothelium 
(eNOS) and in neurons (nNOS). NO can also be produced in 
response to injury (iNOS). nNOS can exist in the cytoplasm 
of neurons or attached to the NMDA receptor where it can 
produce NO in response to glutamate and promote AMPA 
receptor trafficking to the synapse [81]. Regardless of the 
source of NO, NO-induced increases in neural excitability 
can be generated with exogenous application of NO donors 
or precursors [46] and occur through the GC/cGMP/PKG 
pathway [99]. In vivo electrophysiological recordings in 
the visual cortex show that L-arginine, an NO precursor, or 
DEA-NO, a NO donor, can increase neural excitability during 
visual stimulation, while inhibition of endogenous NO by a 
NOS inhibitor, L-MMA, decreases spiking [46]. In addition 
to modulating stimuli evoked firing rates, spontaneous firing 
of Purkinje neurons in cerebellar slices could also be increased 
by a NO donor via cGMP signaling [99]. Oxygen’s ability 
to directly control the rate of NO consumption also provides 
another avenue by which tissue oxygenation could potentially 
influence neural activity. Simulations of oxygen-NO diffusion/
degradation dynamics in the brain have shown that increasing 
levels of oxygen in the blood stream led to decreases in NO 
levels in the tissue [35]. In these simulations, the decreases in 
NO were enough to drive vascular changes (vasoconstriction). 
These changes in blood oxygenation would drive changes in 
NO in the tissue that could impact neural excitability. However, 
oxygen’s interactions with NO degradation mean that cerebral 
blood flow will undergo compensatory changes that will tend 
to counter any changes in blood oxygenation on the time scale 
of seconds that it takes for a vascular response.

Oxygen levels impact the synthesis of many 
neuroactive substances

While mitochondrial respiration is not oxygen limited, 
the synthesis of many signaling molecules can be. For 
example, many of the enzymes involved in neuromodulator 
synthesis are rate limited by oxygen at physiological 
concentrations [108]. Acetylcholine synthesis is oxygen 
limited and is impaired in low oxygen conditions [26]. 
Tyrosine hydroxylase (involved in the synthesis of dopamine 
and norepinephrine) has a Km for oxygen in the range 
of ~ 45 mmHg, and tryptophan hydroxylase (involved in the 
synthesis of serotonin) has a Km in the range of ~ 20 mmHg 
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[108]. These Kms are high enough that physiological fluctuations 
in the level of oxygen in the brain [56, 122,123] could affect local 
synthesis of these neuromodulators (Fig. 1). Both chemically 
induced and hypoxemic-induced hypoxia decrease the synthesis 
of acetylcholine and amino acid-based neurotransmitters [27]. 
Hypobaric hypoxia lowers the concentration of norepinephrine 
and dopamine in the brain [77], though sustained hypoxia can 
drive compensation in these systems [14]. Interestingly, there is 
evidence that altered serotonin metabolism may contribute to the 
increased incidence of mental illness in residents at increased 
altitude [47]. In contrast, increased respiration rate will increase 
tissue oxygenation [123] and could lead to greater availability of 
neuromodulators via increased synthesis.

Oxygenation as a link 
between the peripheral state 
and the “central governor”

Sustained physical exertion over the time scale of minutes 
drives many cardiovascular changes [44]: cardiac output 
and respiration rate increase, while systemic blood carbon 
dioxide and oxygen levels fall. When we physically exert 
ourselves voluntarily, we stop when we become fatigued. 
Traditionally, this fatigue has been attributed to the buildup 
of lactate in the muscles. However, there is some evidence 
that this fatigue is detected in the brain, and that the feeling 
of fatigue is centrally generated [72]. This idea is known as 
the “central governor” hypothesis [71]. A variety of feed-
back signals, both via accumulating chemical signals and 
afferent neural feedback, have been proposed. As oxygen 
levels fall in the blood during sustained exercise, it is a plau-
sible candidate as a signal from the periphery to the brain, 
and experiments manipulating inhaled oxygen in exercising 
humans have shown effects on performance that cannot be 
entirely ascribed to peripheral effects [72]. Hyperoxymia 
during all-out exercise increases work output and increases 
brain (but not muscle) oxygenation, suggesting that cerebral 
oxygenation could act as a sensor of total cardiovascular 
state [70]. In humans, increasing or decreasing inhaled oxy-
gen respectively increases or decreases motor output, but has 
no effect on peripheral fatigue (as measured with electrical 
stimulation of muscles), suggesting that oxygen’s role in pre-
venting fatigue acts via its action on neurons in the brain [2].

Impact of oxygenation on cognitive 
performance and its relation to respiration

Anyone who has been at very high altitude knows how deleteri-
ous a reduction in oxygen can be for the performance of even 
the simplest of mental tasks. Hypoxia [28, 60] and high altitude 

causes many cognitive impairments that increase with sever-
ity of oxygen deficit [68, 117]. Many studies have shown that 
lower levels of brain oxygenation cause poorer performance in 
a wide range of cognitive tasks [60]. There are also numerous 
studies showing that respiratory entrainment of neural activity 
has important impacts on mood and cognition [57]. Oxygen 
levels in the blood decline with age [100], and these declines 
could contribute to the cognitive decline accompanying aging.

If oxygen serves a modulatory role in the brain, we would 
expect it to vary with behavioral state in a way that is not just 
due to increased exertion. In rodents, respiration locks with 
whisking [64]. In humans, respiration rate changes dynami-
cally in response to stimuli and behavioral state [92]. Merely 
opening the eyes, reading, or listening to words causes a 
measurable increase in respiration that is hard to explain with 
metabolic factors alone [93]. Respiration locks to the onset 
of cognitive task, even ones that are not olfactory in nature 
and do not require a verbal answer [75]. Performance in the 
visuospatial task was significantly better during inhalation 
vs exhalation, potentially due to augmented brain oxygena-
tion during inhalation [123]. As all these changes in respira-
tion occur with minimal increases in exertion, their existence 
makes little sense unless oxygen serves some cognitive role.

For changes in respiration to modulate neural activity via 
changes in oxygen levels, changes in respiration rate and depth 
need to play an important role in setting arterial oxygenation 
(Fig. 2). Arterial oxygenation varies over the inhalation-expi-
ration cycle, though the amplitude of the variations is inversely 
related to the breathing rate of the animal [22, 78, 79, 123]. 
Increases in respiration globally increase cerebral oxygenation, 
even in areas with no change or decrease in blood flow [123]. 
Although the average levels of oxygen and their respiration-
linked changes are similar in both frontal and sensory cortices 
[123], there are wide variations in vascular density across the 
brain that could potentially make the oxygen fluctuations larger 
or smaller in different brain regions [48, 113], analogous to 
greater levels of modulation in certain brain regions.

Reciprocal interactions between respiratory 
related brain regions and modulatory 
regions

Neuromodulatory structures make brain-wide projections 
and also form reciprocal connections with other neuromodu-
latory nuclei [110, 88]. If oxygen acts like a neuromodulator, 
we would expect there to be connections between the pre-
Bötzinger complex and other respiratory-control nuclei and 
canonical neuromodulatory regions. Supporting this idea, a 
genetically defined subset of neurons in the pre-Bötzinger 
complex has been found to send excitatory projections to 
the locus coeruleus (LC), and their activation affects LC 
activity enough to cause increases in arousal [116]. This 
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coupling of oxygenation and modulation might take place 
on a breath-to-breath basis. As neurons from pre-Bötzinger 
complex neurons are linked with inspiratory phase of respi-
ration [98], one would expect that there will be a direct rela-
tionship between the inspiratory phase of respiration and LC 
activity, if there is indeed a link between respiration and LC 
activity. Consistent with this idea, pupil diameter, an index 
of LC activity [102], rises in phase with the pre-inspiratory/
inspiratory phase of respiration, and falls during the expira-
tory phase of respiration [61] (Fig. 2), consistent with a 
direct role in activation of LC from pre-Bötzinger complex. 
Different pools of neurons in the pre-Bötzinger complex also 
project to many nuclei across the brain, including the dor-
somedial hypothalamus and lateral preoptic area [118]. The 
dorsomedial hypothalamus sends orexinergic projections 

(which play a key role in maintaining wakefulness [76]) to 
many brain regions. The dorsomedial hypothalamus also 
sends projections back to the pre-Bötzinger complex [23]. 
The lateral preoptic area sends projections to the ventral 
tegmental area (VTA) [25], which sends dopaminergic pro-
jections to many brain regions. The retrotrapezoid nucleus 
(RTN) receives serotonergic input, which can then influence 
breathing rate independent of pH [15, 65]. Thus the nuclei 
that control oxygen levels in the brain (via respiration) have 
connections with other modulatory nuclei.

Relationship to the hemo‑neural hypotheses

Our hypothesis that oxygen modulates neural function 
partially overlaps with the hemo-neural hypothesis [10, 
63]. In the hemo-neural hypothesis, increases in blood 
flow accompanying functional hyperemia send mechanical 
and/or chemical signals to neurons to enhance information 
processing [63]. As both respiration (a global factor) and 
vasodilation (with accompanying increase in blood flow, 
a local factor) contribute to modulating brain oxygenation 
[123], we hypothesize that global cerebral oxygen 
changes, caused by changes in respiration and/or increased 
consumption by other organs, modulate neural activity. 
Local oxygen changes due to functional hyperemia could 
potentially provide a more spatially restricted control of 
activity.

Issues with testing the modulatory oxygen 
hypothesis

Foremost, although extreme elevation and depression of 
blood oxygen (in the tens to hundreds of mmHg over min-
utes or longer) have been shown to have cognitive (and pre-
sumably neural) effects, it has not been determined if the 
much smaller and briefer changes that occur with respiration 
(in the range of few mmHg for a few seconds) can change 
neural activity. Testing this hypothesis is not an easy task. 
Experiments looking at the impact of respiration phase on 
cognitive tasks have the confound that in these experiments, 
other signals are present besides oxygen changes [75]. Oxy-
gen’s effects on NO degradation will tend to function as 
a homeostatic regulator of oxygen levels in the brain, so 
any change in respiration will tend to drive a compensatory 
change in cerebral blood flow, reducing the size and dura-
tion of respiration-induced oxygenation changes. The flow 
of red blood cells is stochastic and results in a highly vari-
able delivery of oxygen, and the fluctuations in the oxygen 
levels that neurons experience [122] will tend to obscure 
any respiration-related changes. Finally, any experimental 
test will have to tease out any direct effects of oxygenation 

Fig. 2  a–b Respiration drives changes in cerebral and blood oxygena-
tion. a Measuring respiration using a thermocouple. Top, example 
data showing tissue oxygenation in the somatosensory cortex of an 
awake, headfixed mouse measured using an oxygen sensitive micro-
electrode (black trace) and respiratory rate (orange trace), during 
locomotion. Middle, signal from a thermocouple placed near the 
nostril of the mouse. The thermocouple voltage tracks inhalation 
and exhalation due to the higher temperature of exhaled air, which 
causes increase in the thermocouple signal. Bottom left, expanded 
thermocouple signal showing of the detection of the onset of inspira-
tory (magenta dot) and expiratory phase (blue dot). Bottom right, 
schematic showing respiration measurement using a thermocouple. b 
Example data showing the temporal relation between respiratory rate 
(black) and oxygen tension  (PaO2, blue) in the center of one artery in 
somatosensory cortex of a mouse during periods of rest. The phase 
shift is caused by transit time from lungs to brain. c  PaO2 fluctuates 
within the respiratory cycle. The  PaO2 change in one artery of a head-
fixed, un-anesthetized mouse during the respiratory cycle at rest was 
measured using an intravascularly injected phosphorescent oxygen 
dye using a two-photon microscope. This technique allows measure-
ment of the concentration of oxygen in the blood plasma from a sin-
gle location in the vasculature.  PaO2 data (15 recordings with each of 
50 s in duration) were aligned to the offset of inspiration. Each circle 
denotes averaged  PaO2 over a short window (20 ms) and over the 15 
recordings. The solid curve denotes filtering of data (first order bino-
mial filter, 5 repetitions). Tmin denotes the time period (40 ms)  PaO2 
reaches minimum. Tmax denotes the time period (40 ms)  PaO2 reaches 
maximum. d Example data showing the temporal relation between 
respiratory rate (black) and pupil diameter (blue, an indicator of 
noradrenergic activity) during periods of rest in an awake, headfixed 
mouse. e Cross-correlation between respiratory rate and pupil diame-
ter during periods of rest. Gray shaded area indicates 95% confidence 
interval. f–g Nasal inhalation at visuospatial task onset is associated 
with improved performance in humans. f Mean event-related nasal 
respiratory signal used to trigger trial-onset time-locked to inhalation 
(orange) or exhalation (blue). Time 0 denotes task initiation. The gray 
rectangle along the x axis represents the stimulus (1,200 ms). Inset: a 
polar plot of the respiratory phase (in degrees) at trial onset is shown. 
The orange and blue bins are trials triggered by inhalation and exha-
lation, respectively (n = 28). g Scatter plot of performance in the EEG 
visuospatial task in inhalation and exhalation. Each point is a partici-
pant (n = 28). The diagonal line is the unit slope line (x = y). Thus, if 
points accumulate below the line, this means performance was better 
during inhalation. In the inlay, the mean group performance is shown. 
Error bars are SEM. a–c adapted from [123], f–g adapted from [75]

◂
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from changes mediated by other neural signals accompany-
ing respiration [104].

There are also several non-neuronal factors that will con-
tribute to the individual details of the oxygen fluctuations 
in the tissue and thus any potentially modulatory effects 
of oxygen. The oxygen-affinity curve for hemoglobin shift 
rightward with increasing animal size [90], and the tidal 
volume and respiration rate will vary with size as well [32], 
so the amplitude and frequency of a breath-by-breath oxygen 
changes in brain tissue will differ by species. The oxygen 
levels will also be affected by lung physiology and health. 
Thus, some of the effects may be more or less salient under 
different physiological or task conditions or in certain ani-
mal species.

Summary

The brain receives more oxygen than it needs to power the 
synthesis of ATP, yet oxygen levels are dynamically reg-
ulated by changes in local vessel dilation and by changes 
in respiration (both breath-by-breath cyclic changes and 
changes due to overall respiratory rate change). Cognitive 
tasks increase respiration [75], and large changes in oxygen 
levels bi-directionally affect mental tasks and reaction times. 
These puzzling facts suggest that in the brain, oxygen has 
some other dynamic function above and beyond its direct 
metabolic role. We discussed the possibility that oxygen 
serves a neuromodulator-like function in dynamically tun-
ing the responsiveness of neurons. One direct evidence is 
that oxygen levels modulate neuron excitability, just like 
canonical neuromodulators. Low oxygen levels can inhibit 
some ion channels to increase the excitability of neurons. 
Besides the direct neural excitatory effects, oxygen levels 
affect the level of neuromodulator nitric oxide via a closed-
loop feedback mechanism, i.e., the breakdown rate of nitric 
oxide will increase with increased oxygen concentration. 
This provides another pathway by which oxygen can impact 
neural excitability, as nitric oxide has many effects on neu-
rons via second messengers. In addition, low oxygen levels 
will reduce the synthesis of many neuromodulators, such as 
acetylcholine and norepinephrine. The broad link between 
oxygenation and numerous modulatory pathways at dif-
ferent levels explains the relation between respiration and 
physical/cognitive performances. It explains how peripheral 
fatigue (due to sustained exercise) can provide brain-wide 
signals via changes in oxygen levels in the blood. It also 
suggests that the increase in oxygenation in the brain caused 
by increased respiration upon presentation of an unexpected 
stimulus may serve a similar purpose as the release of a burst 
of norepinephrine or acetylcholine, which may explain why 
cognition is locked with respiration and why we have better 
cognitive performance in high oxygen level environments. 

While testing this hypothesis will be challenging, it may 
give us insight into the purpose of our dynamic respiratory 
patterns.
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